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Abstract 

Heat-shock proteins are commonly considered to be an intracellular molecular chaperone which performs multitude of 

functions like cytoprotective and cellular housekeeping functions. However many of these chaperones translocate into 

the surface of the cells particularly during stress induced conditions like hypoxia, UV-radiation, chemotherapy, drugs and 

microbial stimuli. Once on the cell surface or in the extracellular space, the heat shock proteins functions like receptors 

for wide variety of ligands by which it regulates signaling, proliferation, invasion, apoptosis, inflammation and immunity. 

Thus, cell-surface Heat-shock proteins may play a unique role in tumor metastasis, distinct from but perhaps overlapping 

with its intracellular function. The discovery of cell surface Heat shock proteins in cancer cells and cells undergoing stress 

presents a novel therapeutic strategy. 
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Introduction 

     Molecular Chaperones are proteins that permit the 
maturation and correct folding of most of the proteome 
[1,2]. As such, they are found in all cellular organisms and 
seem essential for cellular life. Protein folding seems to 
require chaperones from a number of different gene 
families that appear to function at various stages in a 
concerted folding cascade. These proteins belong to the 
small heat-shock protein (HSP) family including HSP27 
and the large 70Kda HSP family including HSP70 as well 
as HSP60, HSP90, and HSP110 families [3]. The acronym 
HSP is derived from the early findings that some of these 
proteins are massively induced during proteotoxic 
stresses such as heat shock [4]. Thus the canonical 
functions of the HSP chaperones are in the folding of 
proteins during mRNA translation and in responding to 
protein unfolding crises in stressed cells [5]. 
 
 
 

Cell-Surface HSPs and Cancer Metastasis 

     However, HSPs also appear to possess functions 
outside the realm of protein folding, some of them 
acquired when they are released from cells to become Cell 
Surface (CS)-HSPs [5-8]. HSPs have been observed in 
serum from human patients, pointing to their existence 
outside of cells in living organisms [9]. The properties of 
extracellular HSPs have now expanded from immune 
response to major intercellular signaling molecules in 
biology and medicine. In this review we describe only the 
functions of CS-HSPs in cancer and their possible role in 
various pathologies. 
 
     As summarized in (Table 1) it has been shown that HSP 
are expressed on the cell surface and that these proteins 
are crucial for cancer progression. HSP25 a murine 
homolog of human HSP27, has been shown to regulate 
metastasis [10]. Surface expression of HSP25 correlates 
with enhanced breast cancer growth in vivo and cells 
expressing higher levels of HSP25 on the cell surface 
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display enhanced metastatic potential in vitro and 
enhanced metastatic activity in vivo. HSP70, a major 
stress- inducible chaperone is expressed at the cell 
surface of melanoma metastases but not in normal skin 
fibroblasts [11]. Cell surface expression of HSP70 is 
observed to be significantly higher in clinically advanced 
oral tumors [12], suggesting that cell surface HSP70 might 
be crucial for tumor progression. In contrast, CS-HSP70 
seems to inhibit metastasis in breast cancer cells [10].    
This discrepancy may be due to the difference in cell 

type.HSP90 identified on the cell-surface is crucial for cell 
motility in neuronal, glioma and melanoma cells [7-34]. 
CS-HSP90 interacts with low-density lipoprotein 
receptor-related protein (LRP1/CD91) to induce a 
number of pro-motility signaling cascades that are 
essential for wound healing [15]. In glioma cells 
extracellular HSP90 promotes interaction of LRP1 with 
ephrin type-A receptor tyrosine kinase 2 (EPHA2) by 
activating AKT signaling which induces pro-motility 
function [7]. 

      

Table 1: Summary of CS-HSPs in Cancer. 

 

Endoplasmic Reticulum (ER) Chaperones 

     The Endoplasmic reticulum (ER) is one of many 
specialized organelles in the cell with diverse and 
apparently ever expanding functionality. Two of the major 
functions of the ER, namely calcium sequestration [16] 
and the correct assembly, folding and secretion of 
glycoproteins were established over the decades [17-19]. 
In ER number of proteins functions like heat shock 
proteins which are HSP47, GRP78, ERP57, protein 

disulfide isomerase (PDI), gp96 and calreticulin [20]. 
During chemical or physical cell stress chaperones 
relocate to the cell surface where it’s associated with 
various diseases particularly cancer (Table 2). Over 
expression of chaperones on the cell surface to cope with 
increased ER stress due to malignancy. CS-ER chaperones 
might be simply a biomarker and we highlight their direct 
role in the spread of tumors by promoting cell 
proliferation [21], migration [22] and metastasis [23,24].

 

HSPs Over expression in diseases Potential role Reference 
HSP25 Breast Cancer Increases metastasis [10] 
HSP70 Oral Tumor, Melanoma Tumor proliferation, Metastasis [11,12] 
HSP90 Glioblastoma, Fibroblast Migration, Wound healing [7,15] 

Table 2: Summary of CS-ER HSPs in Cancer. 

 

Cell Surface ER Chaperones and Cancer 

     HSP47, which is known as a rheumatoid arthritis-
related antigen, has been shown to be expressed at the 
cell surface, and oral cancer cells expressing high levels of 
surface HSP47 display low invasive activity, suggesting 
that HSP47 has an inhibitory effect on cell 
migration/invasion [25]. Thus, may distinct chaperone 
proteins might be expressed at the cell surface, and have 
diverse effects on cell motility, invasion, and cancer 
progression.GRP78 expresses on the cell surface where it 
functions as a multifunctional receptor for a wide variety 
of ligands to mediate proliferative signaling in various 
human cancers. Though the GRP78 forms complexes with 

other proteins on the cell surface, GRP78 is reported to 
mediate tumor cell signal transduction. Cell Surface 
GRP78 is also an angiogenic receptor on endothelial cells 
by increasing its proliferation, migration and tube 
formation [26]. Moreover, CS-GRP78 is required for the 
transcriptional activation of a subset of c-Myc target 
genes and cell transformation [27]. It suggests that CS-
GRP78 function not only as a signaling mediator but also 
activates transcription factors in tumor growth. 
 
     ERP57 increases in the cell surface regulate EGF 
receptor signaling and internalization in breast cancer 
cells. Moreover secretion of ERP57 is essential for matrix 
accumulation and prognostic significance in gastric 

ER HSPs Over expression in diseases Potential role Reference 
HSP47 Oral Cancer Migration and Invasion [25] 
GRP78 Prostate, Glioblastoma Tumor proliferation, gene activation [26,27] 
ERP57 Breast and Gastric cancer Tumor proliferation [28,29] 

PDI Prostate and Lung Cancer Migration [30,31] 
GP96 Ovarian and Pancreatic cancer Immune response [32] 

Calreticulin Melanoma Migration [34] 
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cancer [28,29]. CS-PDI is upregulated in CNS cancers, 
lymphoma’s ovarian, lung and prostate cancer. 
Furthermore it regulates multiple important biological 
processes like injury response and it promotes glioma cell 
migration [30,31]. GP96, the HSP90 homology in 
endoplasmic reticulum, has been shown to be expressed 
at the cell surface only in tumor cells [32], and it was the 
first chaperone described to play a role in the induction of 
anti-tumor immune responses. Several phase I and phase 
II clinical trials are currently ongoing using a GP96- 
peptide complex as a cancer vaccine. The role of GP96 in 
mediating immune responses was well summarized in a 
recent review [33]. Calreticulin, an endoplasmic reticulum 
chaperone is also expressed at the cell surface. 
Calreticulin has been identified as the cell surface lectin 
responsible for triggering cell spreading of melanoma 
cells [34]. Treatment of cells with calreticulin antibody 
inhibited laminin-dependent cell spreading, suggesting 
that calreticulin is crucial for cell motility and that it 
might participate in integrin signaling. Indeed, it is 
reported that calreticulin is associated with integrin α-
2/β-1 on the platelet surface and that it modulates ligand 
interaction with integrin’s [35]. 
 

Conclusion 

     Chaperone molecules play a number of specific roles 
related to protein processing within the cell. It’s also well 
known that HSPs play a central role in cancer 
development and progression. However, new knowledge 
indicates that a select number of chaperones in the 
extracellular environment can play a role in tumor growth 
as well as invasion and metastasis. Therefore it is crucial 
to understand how various post-translational modified 
forms of chaperones are release from cells under resting 
and stressed conditions and how the released chaperones 
exerts their proliferative and cell survival responses. The 
precise nature of the functions and molecular 
mechanisms of CS-HSPs is crucial for enhancing the 
accuracy of cancer diagnosis as well as for developing 
more effective therapeutic agents.  
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