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Abstract 

Genomic analyses of the myeloid malignancies surprisingly identified recurrent heterozygous somatic mutations in 

several splicing factors. Among them, SF3B1, SRSF2, U2AF1 and ZRSR2 are most frequently mutated in patients with 

myelodysplastic syndrome (MDS). Recent studies suggest that mutations in SRSF2 and U2AF1 alter their normal RNA 

binding and splicing preferences in a sequence-specific manner, whereas mutations in SF3B1 promote selection of cryptic 

3’ splice sites. In contrast, mutations in ZRSR2 affect splicing of U12-types introns in “minor spliceosome” pathway. 

Different mutations appear to regulate hundreds of different splicing targets, thereby exclude the possibility of common 

downstream splicing alterations. Therefore, it is important to focus on common physiological processes contributed to 

MDS etiology, which are coupled with splicing alterations promoted by different splicing factor mutations. This mini 

review summarizes the accumulating knowledge about the oncogenic splicing landscapes, underlying mechanisms, and 

physiological processes affected by mutations in three major factors, SRSF2, SF3B1 and U2AF1. 
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Abbreviations: MDS: Myelodysplastic Syndrome; 
AML: Acute Myeloid Leukemia; PTC: Premature 
Termination Codon; NMD: Nonsense-Mediated mRNA 
Decay; ASOs: Antisense Oligonucleotides; TRIDs: 
Translational Read-Through-Inducing Drugs; ATR: Ataxia 
Telangiectasia and Rad3. 
 
     Myelodysplastic syndrome (MDS) is the most common 
cause of acquired bone marrow failure in adults, with a 
frequency of 75/100,000 in USA (≥65 years) [1]. This is a 

heterogeneous group of clonal hematopoietic neoplasms, 
with ineffective and dysplastic hematopoiesis, and often 
progress to acute myeloid leukemia (AML). Genetic 
screenings identified a set of recurrently mutated genes in 
MDS, comprising limited number of physiological 
processes [1]. Recurrent heterozygous somatic mutations 
in SF3B1, SRSF2, U2AF1, and ZRSR2 represent the most 
common class of genetic variations and found in ~60% of 
MDS patients (Figure 1) [1,2].  
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Figure 1: Splicing factor mutations in myelodysplastic syndrome. Schematics showing normal assembly of different 
splicing factors and their coordination during pre-mRNA splicing. Mutations in different splicing factors are shown by red 
spot. 
 

 
     SRSF2 is a splicing factor and a member of the 
serine/arginine (SR)-rich protein family. SRSF2 mutations 
show poorer survival in MDS and an increased risk of 
AML transformation [3]. Mutations predominantly occur 
at the Pro95 codon, which is in close proximity to the 
RRM domain of SRSF2 [2]. Pro95 mutation changes the 
RNA-binding preferences of SRSF2 from a G-rich motif 
[GG(A/T)G] to a C-rich motif [(C/G)C(A/T)G] [4-6]. This 
subsequently causes genome-wide splicing alterations. 
Altered splicing could compromise the function of a 
protein by affecting an important domain. In addition, the 
resultant mRNA could generate a premature termination 
codon (PTC), and degraded by nonsense-mediated mRNA 
decay (NMD). One interesting example is EZH2, which 
encodes Enhancer of zeste homolog 2 protein. EZH2 
catalyzes histone methylation and functions in chromatin 
remodeling, and an important regulator of hematopoiesis. 
Pro95 mutation in SRSF2 causes the inclusion of a poison 
exon in EZH2 transcript, which generates a PTC and 
subsequently degraded by NMD. Among other important 
target genes include BCOR (also recurrently mutated in 
MDS and AML), IKAROS (associated with stem cell 
renewal) and CASP8 (a regulator of apoptosis) [4], 
ARMC10 (tumor suppressing factor) and FYN (the 
tyrosine kinase) [6]. 
 
     SF3B1 is known to promote the stabilization of the U2 
snRNP at the branch point during splicing. SF3B1 
mutations typically occur in the highly conserved C-
terminal domain, between the fourth and eighth HEAT 
domain repeats [7]. Approximately half of these missense 
mutations occur at amino acid residue K700. Other 
nearby hotspots (R625, H662 and K666) are also 
predicted to have a similar functional impact due to close 

proximity [7]. Several studies have shown that SF3B1 
mutations promote aberrant splicing by activating cryptic 
3’ splice site usage [8-11]. As a consequence, many 
mRNAs give rise to PTC, subsequently degraded by NMD. 
One well-recognized aberrantly spliced target gene is 
ABCB7, which encodes mitochondrial iron exporter 
protein. In SF3B1 mutant cells, aberrant usage of 3’ splice 
site causes retention of a 21-bp intronic segment in 
ABCB7 transcript, leading to mRNA degradation by NMD 
[10]. Some other dysregulated genes include ASXL1, CBL, 
ALAS2, SLC25A37, CRNDE, TMEM14C, UQCC1 etc. [10,12-
15]. 
 
     U2AF1 is a subunit of the U2 snRNP and functions in 
recognition of the AG dinucleotide at the 3’ splice site (SS). 
U2AF1 mutations mostly occur at residues S34 or Q157, 
spanning two separate conserved zinc finger domains 
[7,16,17]. U2AF1 mutations show shorter survival and 
increased risk of AML transformation [3,16]. S34 and 
Q157 mutations differentially affect the recognition of 3’ 
splice site in a sequence-specific manner. S34 mutants 
promote recognition of 3’ SS having a C or A immediately 
preceding the AG [17-21]. In contrast, Q157 mutants 
promote recognition of 3’SS bearing a G immediately 
downstream of AG [19]. In U2AF1 S34 mutant cells, 
aberrantly spliced and functionally correlated targets are 
H2AFY (encoding an H2A histone variant) and STRAP 
(encoding serine/threonine kinase receptor-associated 
protein) [21]. Some other reported target genes of U2AF1 
mutants include GNAS, BCOR, KDM6A, PICALM, MED24 etc. 
[17,19,22-25]. 
 
     Splicing factor mutations occur in a mutually exclusive 
manner. Initially it was presumed that the resultant 
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splicing defects caused by individual mutations might 
have common downstream splicing consequences. 
However, it is now evident that different mutations 
appear to induce distinct splicing defects, suggesting the 
possibility that another common mechanism might be 
involved. A recent study reported a chain of events 
triggered by multiple splicing factor mutations, especially 
high-risk alleles in SRSF2 and U2AF1, including elevated 
R-loops, replication stress, and activation of the ataxia 
telangiectasia and Rad3-related protein (ATR)-Chk1 
pathway [26]. Enhanced R-loops result from impaired 
transcription pause release, which are linked to 
compromised proliferation of bone marrow derived blood 
progenitors and the MDS phenotype. In spliceosomal-
mutant MDS, several mRNA isoforms promoted by the 
various splicing-factor mutants harbor a PTC, and are 
therefore potential targets of NMD [4,8-11]. Therefore, 
NMD could be a potential mechanism of oncogenesis for 
several splicing factor mutations in MDS. Although links 
between alternative splicing and NMD have been 
proposed, evidence for a specific role of mutant splicing 
factors in the NMD pathway was lacking. It was reported 
that over expression of certain individual SR proteins 
(including SRSF2) enhances NMD [27]. Therefore, 
mutations in SRSF2 might have a direct regulation in NMD 
in addition to altering splicing, and it will be interesting to 
examine. These could be tested for other splicing factor 
mutations too, especially for SF3B1. 
 
     For therapeutic targeting of spliceosomal mutant MDS 
and related myeloid malignancies, splicing inhibitors 
show considerable promise in recent preclinical studies. 
The best-characterized splicing inhibitors can be 
represented into three major groups: FR901464, 
pladienolide and herboxidiene [28-30]. This inhibitors 
target the SF3b complex. One interesting example is 
E7107, a synthetic derivative of plandienolide D. 
Secondary leukemic Srsf2P95H/+ mice treated with E7107 
showed a significantly reduced leukemic burden and 
longer survival compared to leukemic Srsf2+/+ mice [31]. 
In another study, it was shown that E7107 selectively kills 
SF3B1K700E-expressing cells [11]. Another interesting 
example is H3B-8800, a novel orally bioavailable splicing 
modulator [32]. SF3B1K700E- or SRSF2P95H-knock-in 
isogenic AML cells treated with H3B-8800 showed 
preferential growth inhibition compared to wild-type 
counterparts [32]. Additionally, H3B-8800 inhibited 
tumor growth in mice xenografted with SF3B1K700E-
knock-in K562 cells and reduced the leukemic burden in 
mice xenografted with CD34+ cells from SRSF2 mutant 
CMML patients [32]. Another promising strategy is 
antisense technology to modulate splicing. As for 
example, antisense oligonucleotides (ASOs) drug 

developed to correct a splicing defect in the SMN2 gene in 
spinal muscular atrophy (SMA) had striking results in 
phase-3 clinical trials [33-35]. For PTC-harboring 
transcripts, pharmacological suppression of PTCs by 
translational read-through-inducing drugs (TRIDs) could 
be nice strategy [36]. However, the efficacy of TRIDs often 
compromised by NMD [37]. Suppression of the NMD 
pathway by inhibiting NMD machinery may exert 
detrimental consequences by causing general inhibition 
of the NMD. An alternative approach is gene-specific NMD 
inhibition. Recently, a promising approach has been 
reported combining ASOs and TRIDs to effectively restore 
the expression of full-length protein from a nonsense-
mutant allele [38]. More mechanistic analyses on 
spliceosomal mutant MDS will enable more progress to 
develop effective therapy with high efficacy and minimum 
toxicity 
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