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Abstract 

For over 50 years investigators have considered a malignant stem cell as the potential origin of and a key therapeutic 

target for acute myeloid leukaemia (AML) and other forms of cancer. Leukaemic stem cells (LSCs) have been identified in 

acute myeloid leukaemia (AML). Similar to haemopoietic stem cells, these LSCs are able to self-renew, differentiate, and 

proliferate extensively. Recent studies suggest that LSCs are critical for the initiation and maintenance of leukaemia. 

Exciting new insights into the fundamental underpinnings of LSCs are now being made in an era in which drug 

development pipelines offer the potential to specifically target pathways of significance.  

This mini review will describe the possible targets expressed on the surface of AML, the intracellular targets and the 

novel molecular and flow cytometry methodologies being used to particularly ablate the LSC population. 
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Marrow; SIRPα: Signal Regulatory Protein; ADCC: 
Antibody Dependent Cell-mediated Cytotoxicity; ScFv: 
Single Chain Fragment of the Variable Regions; RTK: 
Receptor Tyrosine Kinases 
 

Targets of AML Therapy Detectable in 
Leukaemic Stem Cells 

     Molecular constructions in AML cells that may serve as 
targets of specific therapy are located in various 
compartments of the leukaemic cell. Generally, such 

targets are either detectable on the cell surface or within 
the cytoplasm [1,2]. 
 

Targets Expressed on the Surface of AML 
Cells 

Based on target molecules expressed on the surface of 
leukaemic cells, a number of new treatment strategies 
have recently been established [3-8]. One of these 
concepts employs humanized antibodies (Ab) conjugated 
with a cytostatic drug. These conjugates bind to 
leukaemic cells through an interaction of the Ab with the 
target structure on the surface of AML blasts. 
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Consecutively, the Ab–drug conjugate is internalized by 
the leukaemic cells. After internalization, the drug is 
released from the Ab and inhibits critical cell functions 
(depending on the nature of the cytostatic drug) and 
eventually leads to cell death [5,6,9,10].  
     An important example for such conjugates is Mylotarg 
(gemtuzumab/ozogamicin), which consists of a 
humanized anti-Siglec-3 Ab (CD33) and the highly potent 
(toxic) cytostatic drug calicheamicin [5,6,9,11]. However, 
it has been found that patients are prone to relapse 
despite being effective at inducing remission in some 
patients, which raises the question of the resistance of 
LSCs to the toxin [12]. 
 
     Another treatment concept for surface antigen 
targeted anti-leukaemic therapy is based on conjugates 
consisting of (humanized) antibodies and radio-isotopes 
[8,13-15]. One example is 131I-anti-CD45 [13,14,16]. 
However, it remains unclear whether this therapy will 
result in an improvement in the disease-free survival of 
patients with AML. 
 
     Furthermore, anti-interleukin-3 (IL-3) receptor alpha 
chain (CD123)-neutralizing antibody (7G3) targeted 
AML-LSCs, impairing homing to bone marrow (BM) and 
activating innate immunity of NOD/SCID mice. 7G3 
treatment profoundly reduced AML-LSC engraftment and 
improved mouse survival. Mice with pre-established 
disease showed reduced AML burden in the BM and 
periphery and impaired secondary transplantation upon 
treatment, establishing that AML-LSCs were directly 
targeted. 7G3 inhibited IL-3-mediated intracellular 
signaling of isolated AML CD34 (+) CD38 (-) cells in vitro 
and reduced their survival. These results provide clear 
validation for therapeutic MoAbs targeting of AML-LSCs 
and for translation of in vivo preclinical research findings 
toward a clinical application [17]. 
 
     CD47 (cytokine receptor like CD123), a 
transmembrane protein that serves as a ligand for signal 
regulatory protein (SIRPα), is upregulated on AML LSCs 
than on HSCs. An increased expression of CD47 on LSC 
contributed to pathogenesis by inhibiting phagocytosis 
though the interaction of the CD47 with an inhibitory 
receptor on phagocytes. Thus, increased CD47 
expression proved to be an independent poor prognostic 
factor. Targeting of human AML stem cells by blocking 
MoAbs directed against CD47 preferentially enabled 
phagocytosis of AML LSC. Elimination of human cancer 
cells in xenograft models of AML by this targeting 
method was also shown. The level of expression of CD47 
on AML blasts is also associated with poor prognosis 
[18,19]. 

     CD96, a member of the Ig gene superfamily, has been 
shown to be expressed in a majority of the LSC 
population and at a much lower frequency in HSC’s. 
CD96+ AML cells are highly enriched for LSC activity 
compared to CD96- AML cells. The presence of CD96 
expression allows AML-LSC can be distinguished from 
normal HSC. Thus, CD96 is a cell surface marker which 
can serve as an LSC-specific therapeutic target [20]. 
 
     Also recently, it was shown that CD96-specific 
antibodies can efficiently activate ADCC (Antibody 
dependent cell-mediated cytotoxicity) which is an 
important Fc receptor mediated effector mechanism for 
the in vivo activity of therapeutic antibodies. However, in 
a clinical setting, future studies are yet to determine 
whether or not the single chain fragment of the variable 
regions fusion proteins (scFv-based mini-antibodies) will 
be able to eradicate AML LSCs [21]. 
 
     ((for info on CD96 by Hosen et al 2007 [22]: i) Two 
clones, clone G8.5 and clone TH-111 were used to 
analyse CD96 expression in normal adult HSCs and 
progenitor cells by flow cytometry. Only ≈ 5% of BM cells 
in HSC-enriched region (Lin-CD34+CD38-CD90+) 
expressed CD96 weakly. ii) In ≈ 66% of samples, the 
percentage of CD96-positive cells in the CD34+CD38-

 AML-LSC-enriched fraction was significantly higher than 
in normal human BM CD34+CD38− cells. CD96 is 
expressed almost exclusively in the CD90− subset. Thus, 
CD96 is frequently expressed on 
CD34+CD38−Lin−CD90− AML blasts, which are enriched 
for LSC activity and exclude HSC. iii) FACS was used to 
fractionate human AML specimens into CD96+ and CD96- 
populations and then transplanted into mice. CD96+ AML 
cells uniquely showed engraftment of human CD45 
positive cells. The confirmation that the engrafted 
hCD45+ were human myeloid leukemia blasts was done 
by measuring CD13/CD14/CD33 expression and/or 
Wright-Giemsa stain of peripheral blood or BM cells. >> 
demonstrate that CD96 is expressed on functional LSC in 
human AML.)). 
 
     ((for info on CD96 from Nodehi S, et al. [21]: Strategies 
are being developed to increase the antitumor efficacy of 
monoclonal antibodies by enhancing ADCC activity. 
Binding affinity to the target antigen as well as Fc binding 
to activating Fc-receptors has been identified as critical 
parameters for the ADCC activity of monoclonal 
antibodies. Single chain fragment of the variable regions 
(ScFv) -Fc fusion proteins (mini-antibodies) may 
represent one promising new molecule format)). 
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     CD32 and CD25 are cell surface markers which were 
found to be highly expressed in human AML LSCs and not 
expressed in normal HSCs. They were also found to be 
present in the all-important cell cycle-quiescent, AML 
initiating cells in the endosteal niche that might be the 
cause for AML relapse. This could facilitate the 
development of therapeutic strategies in AML because 
they were present in a significant number AML patients, 
especially the poor-risk population [23]. 
 
     CXC chemokine receptor (CXCR4) which is a cell 
membrane receptor is found on stem cells [24-26]. It has 
been found that SDF-1α (stromal cell-derived factor-1) 
/CXCR4 interactions contribute to the resistance of LSCs 
to apoptosis in the microenvironment. Effective targeting 
of CXCR4 and its interactions paves the way to eliminate 
and target cells that are usually protected by the bone 
marrow microenvironment [27]. 
 
     Very recently, it was suggested that CXCR4 expression 
is associated with poor prognosis in AML patients and a 
marker of more aggressive disease in a normal karyotype 
AML population [28]. This can even be incorporated into 
risk assessment of AML patients [28,29]. In addition, 
cycling LSC population, characterized by CD93 
expression (which is a marker for non- quiescent LSC 
population), have been shown in AML with an MLL gene 
rearrangement [30]. 
 

Intracellular Targets of AML Therapy 

     Over the past few years, a large number of cytoplasmic 
and nuclear target structures in AML cells have been 
identified [13,31-33]. Among these are DNA-methylating 
enzymes, histone deacetylases, leukaemia-specific fusion 
gene-products (such as PML/RARα), pro-oncogenic 
transcription factors (STAT-family, Ets, c-Myb, HOX, 
NFκB, others) and critical elements in pro-oncogenic 
signal transduction cascades (RTKs, mutated oncogenic 
forms of Ras, others) [33].  
 
     Recent reports suggest that nuclear factor κB (NF-κB) 
is constitutively expressed in blast cells in a majority of 
patients with AML [13,34-36]. Additionally, NF-κB-
activity is detectable in the (quiescent) LSC population in 
these patients, whereas normal unstimulated HSC do not 
express NF-κB activity [13,35]. Thus, trying to eradicate 
LSC’s by direct targeting using NF-ĸB pathway could be a 
potential therapeutic strategy. 
 
     A number of different tyrosine kinase inhibitors have 
recently been identified and applied in clinical trials in 
leukaemic patients [37-48]. Important stem cell receptor 

tyrosine kinases (RTK) expressed in AML cells are the 
SCF receptor KIT, M-CSF receptor FMS, PDGFRβ, FLT1 
and FLT3 [33,47,49,50]. At least some of these tyrosine 
kinases are also expressed in LSC [37]. Several previous 
and more recent observations suggest that these 
molecules do play an important role in leukaemogenesis 
[33,47,49,51,52]. Similarly, the FLT3 gene is the most 
frequently mutated gene in patients with AML 
[33,49,50,52,53]. These mutations lead to ligand-
independent dimerisation of the receptor and its auto-
phosphorylation with consecutive activation of multiple 
signal transduction pathways including the STAT5-, 
RAS/MAPK- and PI3K/AKT-pathway [54]. Since these 
mutations apparently act pro-oncogenically, it is 
appealing to speculate that they all take place and are 
detectable at the stem cell level in patients with AML.  
 
     A number of drugs targeting RTKs have recently been 
applied to AML cells in clinical and/or pre-clinical trials. 
Likewise, the inhibition of FLT3 by AG1296 or 
Herbimycin A in AML cells in mice was found to 
counteract the progression of leukaemia [33,49]. In 
addition, a number of targeting drugs directed against 
RTKs have been developed in recent years, including 
CEP701, CEP751, SU5614, SU5416, SU11248 and PKC412 
[37,42-48,55]. These inhibitors may act on several RTKs 
including FLT3, thus inhibiting proliferation of leukaemic 
cells. Additionally, some of these inhibitors have already 
been evaluated in vivo. Likewise, CEP701 has been 
reported to induce responses in AML patients refractory 
to conventional chemotherapy [45]. Interestingly, at least 
some of these RTK-type receptors are known to be 
expressed in LSC. 
 
     A novel and promising therapeutic strategy to 
preferentially target human AML cells was uncovered by 
lysosome disruption. An important finding of this study 
was that AML LSCs were found to be enriched in bulk 
AML cells and their subsets which showed increased 
lysosomal size and biogenesis after lysosome disruption 
in human AML cells. This research study goes to show 
that some common biological features and mechanisms 
remain open to selective targeting even though AML 
biology is so widely known as heterogeneous [56].  
 
     Aurora A kinases are a family of mitotic 
serine/threonine kinases that play a role in cytokinesis 
during mitosis and cell division. AurA showed a 
significant higher level of expression in AML LSCs than in 
HSCs and can be used as a marker. The study showed 
that specific AurA inhibitors could be used to reduce 
LSCs. The study also further found that the reduction of 
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LSC could be enhanced with stimulation with G-CSF and 
the use of AurA inhibitors [57]. 
 
     Mcl—1 has been found to be up-regulated during AML 
relapses in FLT3/ITD AML LSCs (probably due to the fact 
that Mcl-1 confers some sort of resistance to 
chemotherapy) [58]. Furthermore, deletion of Mcl-1 led 
to induced death of transformed AML and eradicated 
disease in the AML NOD/SCID mice [59]. So, the lowering 
of Mcl-1 through a variety of approaches such as 
disruption or degradation of Mcl-1 by Bcl-2 inhibitors 
and other inhibitors and interfering with transcription 
and translation processes makes Mcl-1 a favourable 
therapeutic target in AML. The same study suggests that 
combination approaches which disrupt multiple pro-
survival pathways and activate their pro-apoptotic 
pathways could show promise for targeting [60]. 
 
     Inhibition of the PI3K-Akt-mTOR pathway seems to be 
a therapeutic strategy in human AML. Ryningen, et al. 
suggests that a combined targeting of different stages in 
the pathway could be investigated as a possible 
therapeutic strategy [61]. 
 
     A recent report showed that AML cells rely on a 
tumor-specific heat shock protein species (teHsp90) that 
is selectively activated under conditions of cell stress and 
signalosome activity [62]. Additionally, a central 
component of stress response pathways, activation of 
NF-kB, is evident in LSCs, but not in normal resting HSCs 
[63]. Challenge of LSCs with agents that inhibit NF-kB, 
proteasome activity, HSP function, and glutathione 
balance have all been demonstrated to selectively target 
leukemic stem/progenitor cells in comparison to normal 
HSC controls [13,64,65].  
 
     A recent study indicates that the physical transfer of 
mitochondria from mesenchymal cells can influence 
leukemic cells, making them more resistant to 
chemotherapy, a phenomenon also described for ovarian 
cancer cells [66,67]. Collectively, these findings indicate 
that modulation of niche interactions may serve to 
increase the sensitivity of LSCs to therapeutic 
intervention.  
 
     Finally, there is also evidence that a pro-inflammatory 
state can influence LSC growth/survival. An intriguing 
study by Kagoya, et al. has recently shown that autocrine 
secretion of TNF-alpha drives the constitutive activation 
of NF-kB, a property of LSCs that is presumably 
associated with their intrinsic biology and malignant 
transformation [63]. Further, a number of mutations 
associated with myeloid malignancy and stem cell 

transformation support a pro-inflammatory milieu that 
likely favors growth of LSCs [68]. Conversely, chronic 
inflammation has been shown to degrade the potential of 
normal HSC [69,70]. Hence, inhibition of pro-
inflammatory factors may serve the dual function of  
inhibiting LSC activity and creating an environment more 
favorable for normal stem cells. This type of intervention 
could be particularly interesting in the context of post 
chemotherapy treatment, where the need for 
suppression of residual disease and promotion of normal 
cell regeneration is perhaps most acute.  
 

Summary and Future Directions 

     AML populations are consisted of hierarchical 
structure and in recent years it has been possible to 
begin analyzing individual constituents of the leukaemic 
clone. Although, varying AML subtypes differentiate to 
differing levels, it has become increasingly evident that 
important similarities exit at the top of the 
developmental hierarchy.  
 
     Given the quiescent status of LSCs and their relatively 
low frequency, ablation of this population is likely to be a 
significant challenge. Despite the fact that a variety of LSC 
characteristics are almost identical to normal HSCs, 
recent studies of AML molecular biology suggest that 
some differences between normal and leukaemic cells 
are apparent in the stem cell/progenitor cell pool [71]. 
From a therapeutic perspective, this observation is 
extremely important because it suggests LSCs do have 
unique characteristics that may make them preferentially 
sensitive to apoptosis /ablation. This information also 
serves to emphasize the importance of better 
understanding LSCs and how they differ from normal 
HSCs. 
 
     By establishing general parameters for induction of 
LSC apoptosis, it should be potential to develop more 
effective clinical therapies. Given the heterogeneity of 
mutations that give rise to these malignancies, the ability 
to target the malignant population is not likely to be 
achieved by a single specific inhibitor. To this end, it is 
fundamental to completely understand the signaling 
pathways that regulate survival and death in LSC 
populations. Current studies have started to characterize 
molecular mechanisms that may be relevant to LSC 
survival. However, more comprehensive methodologies 
using multiparameter or combined approaches should be 
the priority for future studies [72-74]. Well-designed 
studies incorporating elements such as randomized 
discontinuation [75], as has been done in other oncology 
studies [76], may be required to answer these questions. 
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We look forward to the day when these questions 
become relevant in the drug development process for 
AML, and have reason to hope that they are around the 
corner.  
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