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    Abstract  

Stem cell differentiation and self-renewal are regulated by several factors, including molecules that each cell expresses 

both inside and on its surface. Cancer stem cells (CSCs) exist in some populations of cancer cells, however, the origin and 

characteristics of CSCs remain incompletely understood; thus, a deeper analysis of the essence of CSCs is required. Since 

the CSCs exhibit the properties to initiate tumor and be resistant to anti-cancer drugs, inquiries into the molecular 

mechanisms in CSCs may lead to the discovery of novel therapeutic targets for cancer. Epithelial-mesenchymal transition 

(EMT), in which cells transit from epithelial-like into mesenchymal-like cell features, is an important phenotype of CSCs 

and cancer metastasis. In this review article, the molecules and signaling pathways involved in CSCs, with a focus on 

molecules so-called CD antigens, of which combinations represent cancer types and CSCs, are summarized and described 

for further investigation of CSCs as well as the stem cell properties of cancer. Considering that CSCs and stem cells may 

have similar properties, and cancer and stem cells exhibit similar signaling pathway activation in self-renewing, the 

phenotypes of CSCs including EMT may confer tumorigenic properties to the stem cells. From overviewing the literatures, 

it is suggested that CSCs are defined with combinations of several markers, and investigation of EMT network is 

important. 
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Introduction 

     It is important to investigate the properties of cancer 
stem cells (CSCs) for cancer treatment. CSCs can be 
defined as the cells in cancer that have self-renewal 
potential and differentiate into cancer cell lineages [1-5]. 

The concept of CSCs are very complicating and still need 
to be investigated, since the CSCs initiate tumors and are 
resistant for conventional cancer therapy [1]. 
Furthermore, cancer and stem cells share similar 
mechanisms of signaling pathways such as Wnt pathway, 
Hedgehog pathway, and Notch pathway [1]. Several 
agents have targeted self-renewal signaling pathways or 
CSC surface markers, indicating the importance of 
investigation in CSCs [1]. CSCs have tumorigenic capacity 
when transplanted into nonobese diabetic (NOD)/severe 
combined immunodeficient (SCID) mice and have drug 
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resistance and metastatic properties [2,5-8]. CSCs exhibit 
epithelial-mesenchymal transition (EMT) characteristics 
and the cellular phenotypic changes accompanied by EMT 
promoting the metastatic property of the cells [9]. The 
cells exhibiting the EMT phenotype are suggested to 
transform into CSC-like cells [10,11]. Although evidence 
indicating the close link between CSCs and the EMT 
mechanism has accumulated, the combination of CSC 
markers related to the phenotype, malignancy and genetic 
alteration of cancer are not fully revealed, which 
emphasizes the significance of elucidating the 
pathological role of CSC markers and the relationship 
between cancer grade and CSC markers [12]. The CSC 
model is also implicated as a cancer-initiating cancer 
model, and CSCs have potential to initiate tumors [13,14]. 
Plasticity of CSCs should be investigated to reveal the 
cancer malignancy and EMT correlation [15]. In this 
review article, markers for CSCs and the signaling 
networks of CSCs and EMT are described. 
 

Definitions of CSCs 

     CSCs are defined as cells that have capacity to generate 
tumors and self-renewal [1,6,16]. CSCs are probably 
originated from cancer cells in niche by transiting the 
phenotypes from differentiated cells into un-
differentiated cells [1,16]. The CSCs reside in side 
population (SP) fraction defined by the Hoechst-33342 
dye exports can also be used to identify CSCs [16-18]. SP 

cells with faint staining of Hoechst-33342 dye are sub-
population of stem cells in cancer, which have capacity of 
self-renewal and differentiation [19]. CSCs are identified 
with tumor sphere formation, which includes dilution 
assay of neurospheres from brain to evaluate self-renewal 
capacity and proliferation [20]. 
 

CSC Markers 

The Riddle of CSC Markers and the Significance 
of their Combination   

     Abundant studies have investigated CSC markers in 
cancer. CD44+ and CD24-/low cells have demonstrated the 
capacity to induce tumors in NOD/SCID mice by 
transplantation [16]. CD133 (also known as PROM1, a 
pentaspantransmembrane glycoprotein maintaining stem 
cell properties), CD44 (a receptor for hyaluronic acid), 
Sca1 (stem cell antigen-1) and CD90 (also known as Thy1, 
a cell surface glycoprotein involved in cell adhesion and 
cell communication) are often used for identification of 
stem cells [16]. However, these markers are also 
expressed in normal tissues, and they are quite 
controversial dependent on the literatures [16]. The exact 
CSC markers are not fully understood and need to be 
elucidated. The combination of the markers is significant 
to solve the riddle of CSCs. The example of several CSC 
marker candidates studied in various cancers is shown in 
Table 1. 

 

Cancer type CSC marker candidates Reference 

gastric cancer 

ALDH+ Nishikawa S et al.[23] 
CD90+ Jiang J et al. [24] 

CD44+CD166+ Nguyen PH et al. [26] 
CD44+CD26+ Nishikawa S et al. [28] 

CD133+ Konishi H et al. [32] 
CD44+ Takaishi S et al. [29] 

CD44+EpCAM+ Han ME et al.[31] 
CD44+CD24+ Zhang C et al. [34] 

pancreatic cancer 

CXCR4+CD133+ 
Polireddy K et al. [35] 

Hermann PC et al. [36] 

CD24+CD44+ESA+ 
Wang H et al. [37] 

Li C et al. [38] 
CD24+CD44+EpCAM+CD133+ Skoda J et al. [39] 

CD133+ Miyazaki Y et al. [40] 

YY1lowSOX2lowOCT4hiBMI1hi Kaufhold S et al. [41] 

CD24+CD44+ Liu L et al. [42] 
breast cancer CD44+CD24-/low Clarke MF et al. [16] 
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CD44+CD24-/low, ALDH+ 
Dai M et al. [43] 

Habib JG et al. [45] 

CD44+CD24- Horimoto Y et al. [44] 

CD44+CD24-/low, SOX2+, KLF4+, ABCG2+ Park SJ et al. [91] 

liver cancer 
CD133+CD49f+ Rountree CB et al. [48] 

CD44+CD90+ Yang ZF et al. [50] 

colorectal cancer 
CD133+ Ricci-Vitiani et al. [52] 

CD133+CD54+CD44+ Fang C et al. [54] 

gioblastomamultiforme GFAP+SOX2+ Bradshaw AR et al. [60] 

prostate cancer CD44+CD24- Sharpe B et al. [64] 

Table 1: Cancer stem cell markers in various cancers. 

CSC Markers in Gastric Cancer 

     Tumor-initiating cells are enriched in SP cells 
characterized by the high expression of the ABC 
transporter genes, ATP binding cassette subfamily B 
member 1 (ABCB1, also known as MDR1) and ABCG2 (also 
known as BCRP1), in gastric cancer [21]. These tumor-
initiating cells are considered as tumor therapeutic 
targets [21]. Several driver mutations within tumor 
protein p53 (TP53), AT-rich interaction domain 1A 
(ARID1A), cadherin 1 (CDH1), mucin 6, oligomeric 
mucus/gel-forming (MUC6), catenin alpha 2 (CTNNA2), 
GLI family zinc finger 3 (GLI3), ring finger protein 43 
(RNF43) and ras homolog family member A (RHOA) genes 
exist in gastric cancer [22]. The combination of the 
specific molecular alterations may distinguish different 
cancer types [22]. Aldehyde dehydrogenase (ALDH) is one 
of the causes for the chemoresistance in cancer cells, and 
it may be a CSC marker [23]. CD44 and epithelial cell 
adhesion molecule (EPCAM) are expressed in gastric 
cancer cell lines, whereas CD90, CD133, and CD117 (also 
known as KIT, a proto-oncogene receptor tyrosine kinase) 
were undetectable in gastric cancer cell lines [23]. A 
gastric cell line expresses CD13 (also known as ANPEP, 
alanylaminopeptidase), and 4 out of 6 gastric cancer cell 
lines express CD26 (also known as DPP4, dipeptidyl 
peptidase 4) [23]. CSCs are characterized by the presence 
of the CD90 surface marker in primary gastric tumor 
models [24]. On the other hand, a report has shown that 
CD90 was down-regulated in ovarian cancer, and patients 
with higher CD90 expression had better prognosis 
compared to patients with lower CD90 [25]. These results 
suggest that CD90 may be differentially expressed in 
different types of cancer. Considering that CD90 was not 
expressed in gastric cancer cell lines and expressed in the 
primary gastric tumor model, the cellular stemness 
phenotype may change from primary tumor to cell lines, 

and the degree of stemness may contribute to the cancer 
phenotype and resistance. 
     A subpopulation of gastric cancer cells expressing 
CD44 together with EPCAM, CD133, and CD166 (also 
known as ALCAM, an activated leukocyte cell adhesion 
molecule) contains CSCs that have high ALDH activity 
[26]. Abnormal spindle microtubule assembly (Aspm) 
was identified as a novel possible oxyntic 
stem/progenitor cell marker [27]. Both CD44 and CD26 
were suggested as potential markers for human gastric 
CSCs [28]. CD44-positive gastric cancer cells possessed 
stem cell properties and chemotherapy or radiation 
resistance [29]. The signal transducer and activator of 
transcription-3 (STAT3) activation is a possible marker 
for gastric CSCs [30]. The gastric cancer cells expressing 
both EPCAM and CD44 showed resistance to 
chemotherapy [31]. In the diffuse-type gastric cancer, 
Notch1 signaling was involved in the induction of CD133 
expression [32]. The runt related transcription factor 1 
(RUNX1) enhancer element is promoted in the isthmus 
stem cells of the stomach corpus, and it may provide a 
clue to gastric carcinogenesis [33]. It has been reported 
that a subpopulation of CD44+ and CD24+ cells was 
identified as gastric CSCs [34]. 
 

CSC Markers in Pancreatic Cancer 

     The combination of the markers CD133 and CXCR4 is 
considered essential for pancreatic cancer metastasis in 
the liver [35,36]. CD24 (a sialoglycoprotein), CD44, and 
epithelial specific antigen (ESA) are used to identify 
pancreatic CSCs [37,38]. The pancreatic CSCs and the 
expression of CD24 and ESA were inhibited by bufalin, a 
toad poison ligand and a potential anticancer agent, 
possibly via the Hedgehog (Hh) signaling pathway [37]. 
The population of CD24+CD44+EPCAM+CD133+ cells in 
pancreatic ductal adenocarcinoma had enriched pro-
tumorigenic properties [39]. It has been reported that 
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pancreatic CSC-like cells expressing the CSC marker 
CD133 are affected by the inhibition of Hh/GLI and mTOR 
signaling [40]. The Yin Yang 1 (YY1) transcription factor 
is involved in CSC properties and in the regulation of SRY-
box 2 (SOX2), POU class 5 homeobox 1 (POU5F1, also 
known as OCT4) and BMI1 proto-oncogene, polycomb 
ring finger (BMI1) [41]. The classification of cancers using 
molecular markers include YY1loSOX2hiBMI1hiOCT4hi for 
prostate, lung, cervical, endometrial, ovarian and glioma 
cancers, YY1hiSOX2loBMI1hiOCT4hi for skin, testis and 
breast cancers, YY1loSOX2loBMI1hiOCT4hi for liver, 
stomach, renal, pancreatic and urothelial cancers, and 
YY1hiSOX2hiBMI1loOCT4hi for colorectal cancer, lymphoma 
and melanoma [41]. The inhibition of the WNT/-catenin 
pathway with FH535 down-regulated the gene expression 
of CD24 and CD44 in pancreatic cancer [42]. 
 

CSC Markers in Breast Cancer 

     CSCs in triple negative breast cancers (TNBCs) 
exhibiting a high expression of CD44 and a low expression 
of CD13 are targeted for treatment [43]. In TNBCs, cyclin-
dependent kinase 4 (CDK4) regulates CSCs, and the 
suppression of CDK4 changes the mesenchymal 
phenotype of TNBCs expressing CD44, CDK4 and vimentin 
into the epithelial-like phenotype of the cells expressing 
CD24 and E-cadherin [43]. Another study has 
demonstrated that CD44+CD24- cells denote CSCs in 
TNBCs [44]. The Hh pathway is implicated in TNBC and 
CSC reprogramming, since the pathway has a role in stem 
cell renewal [45]. Sonic Hedgehog (Shh) was up-regulated 
in TNBCs, which suggests the possibility of targeting the 
Sonic Hh (Shh) pathway in cancer treatment [46]. 
Plumbagin, a naphthoquinone, selectively reduces the 
population of ALDH1-positive cells in basal-like BRCA1-
defective breast cancer cells, which suggests that CSCs are 
selectively targeted by the reactive oxygen species 
inducer plumbagin [47]. Plumbagin represses the 
expression of stemness and EMT markers in cancer 
xenografts [47]. 
 

CSC Markers in Liver Cancer 

     The CD133+CD49f+ cells had tumorigenic potential and 
were identified as CSCs in liver cancer [48]. The 
hepatocellular carcinoma CSCs positive for CD133 were 
resistant to IFN--induced autophagy [49]. The 
CD44+CD90+ cells were also identified as CSCs in human 
liver cancer [50]. CD90 protein level may be a cancer-type 
specific marker such as liver cancer, and the combination 
with other markers may be a hallmark for liver CSCs. At 
least, it seems like CD90 expression in combination with 
CD44 demonstrate the tumorigenic capacity in liver 
cancer [50]. The growth of hepatic cancer can be inhibited 

by WM130, a novel derivative of matrine that is a major 
active alkaloid of the Chinese herbal medicine 
SophoraflavescensAit [51]. It has been suggested that its 
interference with cancer growth is mediated by the 
inhibition of glycogen synthase kinase 3 (GSK3 /-
catenin signaling in hepatic CSCs [51].  
 

CSC Markers in Colorectal Cancer 

     CD133 was identified as a CSC marker for human colon 
cancer [52,53]. The CD133+CD54+CD44+ circulating tumor 
cells are suggested to be prediction markers for liver 
metastasis in colorectal cancer patients [54]. BMI1 was 
demonstrated as a therapeutic target for cancer stemness, 
and BMI1 inhibition resulted in colorectal cancer 
initiating cell loss [55]. BMI1, CD44, CD133 and EpCAM 
were reported to be expressed in colorectal CSCs, 
whereas CD29, leucine rich repeat containing G protein-
coupled receptor 5 (Lgr5) and musashi RNA binding 
protein 1 (MSI1) were expressed in both normal 
colorectal stem cells and colorectal CSC [56-59]. 
 

CSC Markers in Glioblastoma multiforme 

     The SOX2+ CSC population in glioblastomamulti forme 
expresses (pro)renin receptor (PRR), angiotensin II 
receptor 1 (ATIIR1) and ATIIR2, which suggests the 
presence of a relationship between the renin-angiotensin 
system and CSCs [60]. Glioblastoma multiforme CSCs are 
positive for GFAP and SOX2, which may be candidates for 
the therapeutic targeting of glioblastoma multiforme [60]. 
 

CSC Markers in Prostate Cancer 

     The tumor-initiating stem-like cells in prostate cancer 
are characterized by co-expression of the human 
pluripotent stem cell markers TRA-1-60, CD151 and 
CD166 [61]. ELL-associated factor 2 (EAF2)-knockout 
mice had increased prostate microvessel density and 
prostatic intraepithelial neoplasia [62]. Methylation 
silencing of the Nrf2 promoter, resulting in reduced Nrf2 
expression, was associated with the progression of 
murine prostate cancer TRAMP cells, which is modulated 
by radix  Angelicae Sinensis, which has an anti-cancer 
effect [63]. CD44+/CD24- cells in prostate cancer DU145 
cell lines were identified as CSC markers [64]. ALDH1 and 
EZH2 were shown to be potential CSC markers in prostate 
cancer [65]. 
 

EMT and CSCs 

EMT 

     EMT is defined by cellular phenotypic change from 
epithelial-like cells into mesenchymal-like cells, and the 
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induction of EMT confers stem cell like properties on 
epithelial cells [66]. Cells express CSC markers such as 
CD44high/CD24low have up-regulated expression of EMT 
markers including twist family bHLH transcription factor 
1 (TWIST1), vimentin (VIM), snail family transcriptional 
repressor 2 (SNAI2), TWIST2 and fibronectin 1 (FN1), 
compared to CD44low/CD24high cells [66]. The EMT-
induction with tamoxifen using a vector expressing 
tamoxifen-activatable form of either the Snail or the Twist 
transcription factors resulted in promotion of CSC 
generation indicated with increase in tumor sphere 
formation [66]. EMT itself is a phenotypic transition 
occurs during embryonic development, in which epithelial 
cells transit into mesenchymal-like cells that have 
migration capacity with loose intra-cell connections [67]. 
EMT is induced with TGF1 treatment, or expression of 
Snail or TWIST, resulting in cellular transition into 
mesenchymal cells with CD44high/CD24low expression 
pattern [67]. It is still in discussion whether EMT-induced 
cancer cells equal to CSCs, or what mechanism underlies 
EMT and CSCs. The models suggest that cancer stem-like 
cells are implicated with autophagy of EMT-induced 
mesenchymal tumor cells [68]. It has also been reported 
that LGR5-expressed human gastric adenocarcinoma 
MGC803 tumor sphere cells exhibit tumorigenic CSC 
phenotype as inoculated in nude mice [69]. The MGC803 
sphere cells have higher expression in LGR5 and NANOG, 
a stemness marker, compared to MGC803 adherent cells 
[69]. MET, an inverse mechanism of EMT is dysregulated 
in cancer, in which Wnt/catenin signaling pathway is 
activated to promote stemness and invasion [70]. 
Phenotype transition and plasticity in cancer and stem 
cells are still needs to be investigated and revealed. 
 

EMT in Stem Cells 

     The plasticity through transitional states during EMT 
and mesenchymal-epithelial transition (MET) has been 
reported [71]. The cellular transition between epithelial 
and mesenchymal phenotypes consists of several states, 
not only the distinct mesenchymal or epithelial states but 
also intermediate states called EM states [71]. In these 
states, different combinations of molecules are expressed 
[71]. EMT induced by PDGF-D is linked with stem cell 
signatures such as Nanog and Sox2 expression [10]. In 
embryonic stem cells, RUNX1 regulates EMT and cell 
differentiation [72]. RUNX1 is up-regulated in the early 
stages of human ES cell mesendodermal differentiation 
[72]. CDH1, an epithelial marker, was up-regulated, 
whereas CDH2, a mesenchymal marker, was down-
regulated in diffuse-type gastric cancer compared to MSCs 
[73]. Catenin beta 1 (CTNNB1), an EMT-related gene, is 
up-regulated in the diffuse-type gastric cancer compared 

to MSCs [74]. Wnt/-catenin signaling is important in 
EMT and in the progression of cancer [73-76]. MSCs play 
a dual role as tumor supportive effects, including 
transition to tumor-associated fibroblasts and the 
stimulation of EMT, and tumor suppressive effects, 
including the down-regulation of the Wnt/-catenin 
pathway and the PI3K/AKT pathway in tumors [77]. It is 
still controversial whether epithelial plasticity renders 
stemness, as MET initiates and is required for the 
reprogramming of fibroblasts into induced pluripotent 
stem cells [71,78]. There might be transition between 
mesenchymal and epithelial phenotypes, even in stem 
cells. 
 

EMT in CSCs 

     The early EMT program with epithelial plasticity 
correlates with CSCs [79]. The cells exhibiting an EMT 
program enter the CSC state with transient expression of 
EMT transcription factors [80]. The EMT phenotype is 
exhibited in transformed cells, and FOXA1 and FOXA2 
transcription factors are down-regulated in transformed 
cells [81]. EMT is associated with IGF1R activation via 
IGF1 [82]. IGF1R also mediates the transforming growth 
factor 1 (TGF1)-induced EMT [82,83]. In the acquisition 
of the EMT phenotype, the lipogenic enzyme fatty acid 
synthase (FASN), lysyl oxidase like 2 (LOXL2), integrin 
subunit alpha 6 (ITGA6), and Dickkopf-1 (DKK1) are 
reported to promote EMT and CSC-like phenotypes [84-
87]. E-cadherin down-regulation and VIM up-regulation, 
which are indicators of the EMT phenotype,are observed 
in residual nasopharyngeal carcinoma cells with high 
radioresistance and cross-resistance to paclitaxel and 
cisplatin [88]. High expression of Lgr5 and c-myc, which 
are markers of the CSC phenotype, was also demonstrated 
in residual nasopharyngeal carcinoma [88]. CD44, a 
receptor for hyaluronic acid, promotes EMT and CSC 
expansion [79]. Etoposide, a topoisomerase II, is reported 
to revert the EMT signature correlated with the 
expression of CD44 in breast cancer cells [89]. The EMT 
phenotype is also induced by 4-methylnitrosamino-1-3-
pyridyl-1-butanone, which is a major risk factor for 
cancers and may be involved in CSC induction and 
chemoresistance [90]. Stimuli such as 17-estradiol, 
TGF1 and hypoxia promote EMT and CSC phenotypes in 
breast cancer [91]. EMT, associated with CSC formation, 
induces DNA accessibility in regions distant from 
transcription start sites and enriched with chromatin 
enhancer marks [92]. FOXN2 and FOXQ1 regulate the CSC 
phenotype [92].  
 
     Hh signaling induces EMT and ABCG2 up-regulation, 
leading to resistance to EGFR tyrosine kinase inhibitor in 
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primary and secondary resistant non-small-cell lung 
cancer cells [93]. TWIST1 and BMI1 are involved in EMT-
related CSC proliferation, cancer metastasis and 
chemoresistance [94]. A histone demethylase named 
retinoblastoma-binding protein 2 (RBP2) promotes EMT 
in renal cell carcinoma and may be an epigenetic 
regulator initiating CSC phenotype via EMT [95]. Galectin-
3 (Gal3) is reported to be associated with CSC 
characteristics, and the knockdown of Gal3 leads to EMT, 
increased sphere-formation ability and drug resistance 
[96]. Hepatocellular carcinoma may follow the phenotype 
plasticity model, in which the bidirectional conversion 
between cancer cells and CSCs undergoing EMT may lead 
to cancer development [97]. EMT is the driver of hepatic 
CSC plasticity, and the EMT phenotype is linked with CSC 
biology [97]. The Z-cad dual sensor determines the 
epithelial and mesenchymal state of carcinoma cells [98]. 
The EMT/MET plasticity response to various stimuli can 
be detected with the Z-cad dual fluorescent sensor [98]. 
Numb-like (NumbL), a protein involved in cell 
development, adhesion and migration, down-regulates 
the EMT and CSC-related transcripts and CSC-like 
phenotypes [99]. NumbL is reported as an independent 
tumor suppressor inhibiting the Notch pathway [99]. 
CD44 and CD24 are related to the reprogramming of 
nasopharyngeal carcinoma cells into CSC phenotype via 
STAT3 activation, which suggests that the combination of 
CD44/CD24/STAT3 could be a potential therapeutic 
target [100]. CSC signaling pathways were found to 
control key driver genes regulating parallel signal 
transduction in the quiescence, survival and maintenance 
of stemness in CSCs [101]. The plasticity of the CSC 
phenotype and the EMT/MET mechanisms provide the 
therapeutic targets for oral squamous cell carcinoma 
[102]. It is known that the CD44highCD24low signature 
determines the CSCs and EMT phenotype [103]. DNA 
methyltransferase 1 (DNMT1) promotes prostate cancer 
metastasis via EMT and CSC regulation [104]. The Hippo 
pathway has been reported to be involved in breast tumor 
cell invasion promoted by Twist-mediated EMT [105]. In 
human hepatocellular carcinoma, SOX9 was reported as a 
CSC marker regulating Wnt/-catenin signaling and 
osteopontin [106]. Janus kinase 2 (JAK2) expression is 
dysregulated by TrkC, which induces EMT in metastatic 
breast cancer [107]. EMT in breast cancers is suppressed 
by 3,6-dihydroxyflavone via the inhibition of the Notch 
signaling pathway [108]. In pancreatic carcinogenesis, it 
was reported that -mangostin-encapsulated poly(D, L-
lactic-co-glycolic acid) (PLGA) nanoparticles (Mang-NPs) 
inhibit CSCs and EMT associated with the down-
regulation of pluripotency maintaining factors, stem cell 
markers, EMT-related molecules and components of the 
Shh pathway [109].  

Signaling Pathways in CSCs and EMT 

     Many signaling pathways regulate cancer 
transformation, which includes Wnt signaling pathway 
started by Wnt ligand binding to the receptors Frizzled 
(Fz) and low-density lipoprotein receptor-related protein 
5 (LRP5) and LRP6, leading to the release of -catenin 
from the complex consists of adenomatous polyposis coli 
protein (APC), axis inhibition protein (Axin), GSK3 and 
casein kinase 1 (CK1), Hedgehog (Hh) signaling 
pathway initiated by binding of a Hh ligand to protein 
patched homologue (PTCH), and Notch signaling activated 
by interaction between the Notch ligand and Notch 
receptor [110]. It has been reported that activation of 
Wnt/-catenin signaling in combination with laminins 
leads to increase in gene expression of ISL1, OCT4, KDR 
and NKX2.5, markers for cardiac progenitors and 
multipotent stem cells [111]. EMT is induced by several 
signaling pathways, including the Hh, TGF receptor 
tyrosine kinase, Wnt, Notch and Hh, matrix and hypoxia 
signaling pathways [85,86,112]. Shh pathway molecules, 
such as Gli1, Gli2, Ptch1/2 and Smo, are down-regulated 
by Mang-NPs, which are related to CSCs and EMT 
inhibition in pancreatic carcinogenesis [109]. The Hh 
pathway is activated by pro-inflammatory cytokines, TNF-
 and IL-1 through the up-regulation of the expression 
of GLI1, an important gene in EMT, in pancreatic ductal 
adenocarcinoma [113].  
 
     Galectin-1, agalactoside-binding protein expressed 
in activated cancer-associated fibroblasts, induces EMT, 
GC cell migration and invasion through Gli1 up-regulation 
[114]. Galectin-1 also induces EMT via the non-canonical 
Hh pathway, leading to the increased transcription of Gli-
1 in an SMO-independent manner [115]. 
PI3K/AKT/mTOR and Shh pathways inhibit CSC 
characteristics and tumor growth in pancreatic cancer 
[116]. Inhibitors of PI3K/mTOR (NVP-LDE-225) and SMO 
(NVP-BEZ-235) were shown to inhibit EMT by regulating 
cadherin, vimentin, Snail, Slug and Zeb1 [116]. Several 
long non-coding RNAs (lncRNAs) associated with the Hh 
pathway are dysregulated in Twist-positive breast cancer 
and regulate CSC maintenance via growth arrest specific 1 
(GAS1), an enhancer of Hh signaling, SOX2 and OCT4 
[117]. The demethylation of trimethylated histone H3 
lysine 27 (H3K27me3) increases under hypoxic 
conditions in the MCF7 human mammary 
adenocarcinoma cell line and is reversed upon re-
oxygenation [118]. The H3K27me3 may be implicated 
with CSC signaling, considering that repeated hypoxia and 
re-oxygenation are known to promote tumor stem cell 
properties, and stem cell niches are hypoxic [118].  
 



Journal of Embryology & Stem Cell Research 

 

Tanabe S. Molecular Markers and Networks for Cancer and Stem Cells. J 
Embryol Stem Cell Res 2017, 1(1): 000101. 

                                                                              Copyright© Tanabe S. 

 
 

7 

Targeting CSC Phenotype 

     The cells positive for CD36, a fatty acid receptor, and 
CD44 isolated from primary oral orthotopic tumors are 
considered to be metastasis-initiating cells that exhibit a 
correlation with poor cancer prognosis [119]. The HER 
family molecules c-MET, ALK, and IGF-IR are targets for 
cytotoxic drugs [120]. Pan tyrosine kinase inhibitors 
(TKIs) (canertinib, neratinib and afatinib) are effective in 
the inhibition of ovarian cancer cell growth and 
attenuation of phosphorylation of EGFR, HER2, AKT and 
MAPK in ovarian cancer cell lines [120].  
 
     MicroRNAs (miRNAs) are potential biomarkers for the 
early detection of pancreatic cancer [121]. It is suggested 
that the up-regulation of miR-106a and miR-27a and the 
down-regulation of miR-219-13p are associated with 
EMT, whereas the down-regulation of miR-17-92 is 
related to chemoresistance in pancreatic cancer [121]. It 
is also known that miR-139-5p is down-regulated in 
colorectal carcinoma cells and in the multiple drug 
resistant CSC model comprising a CD44+CD133+ cell 
population [122]. NOTCH1 is a direct target of miR-139-
5p, and the expression of NOTCH1 and miR-139-5p is 
inversely correlated and regulates the CSC drug-resistant 
phenotype [122].  
 
     The expression of the tumor-suppressive miRNAs miR-
200b, miR-200c, miR-122 and miR-145 is correlated with 
DEAD-box helicase 3, X-linked (DDX3), and the reduction 
of DDX3 promotes DNA methyltransferase 3A (DNMT3A), 
indicating that DDX3 prevents CSC formation via the 
epigenetic regulation of tumor-suppressive miRNAs 
[123]. Adult T-cell leukemia/lymphoma (ATL)-derived 
exosomes containing miR-21 and miR-155 have been 
reported to modulate MSCs via the activation of the NF-B 
pathway and IB- phosphorylation [124]. MSCs were 
reported to induce metastasis of 3D-cultured 
hepatocellular carcinoma cells through TGF-induced 
EMT [125]. In upper urinary tract urothelial cell 
carcinoma cells, androgen receptors (ARs) contribute to 
CSC expansion upon alteration of the CSC-related miRNA 
profile, suggesting the possibility of targeting AR in cancer 
therapeutics [126]. It has been reported that the decrease 
in the lncRNA HOTAIR inhibits human colorectal CSCs, 
which indicates the possibility of targeting HOTAIR 
expression in CD133+ CSCs in colorectal cancer 
therapeutics [127].   
 

Conclusion 

     The research on CSC markers has revealed an abundant 
number of targets for use in the therapy for multiple drug 

resistant cancers. The combination of molecules and the 
pathways involved in CSCs need to be elucidated. EMT is 
involved in CSC formation, and the phenotypic change via 
EMT is an important factor for cancer metastasis and drug 
resistance in CSCs. The CSCs in the SP of cancer cells 
exhibiting EMT contribute to tumor formation. Further 
investigation is needed to understand the whole picture 
of CSCs and EMT.  
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