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Abstract 

Human syndromes are often complex and not easily explained by a single gene mutation. Syndromes have a mix of 

symptoms that result from a failure in complex developmental networks. An in-depth analysis of the development of the 

head and heart tissues has recently shown that the musculature, which constitute these distinct systems arise from a 

common pool of mesoderm progenitor cells within the cardiopharyngeal field (CPF). This CPF was shown to be present 

early in the evolutionary development of vertebrate embryos. Furthermore, analysis of the development of tunicates, 

chicken and mice lead to a better understanding of the evolution and development of head and heart muscles. This in turn 

has the potential to increase our understanding of syndromes in which mainly cranial and cardiac structures (in 

particular muscles) are involved. The application of the basic science of evolutionary biology to improve our 

understanding of health and disease is the basis of evolutionary medicine. This approach has already proven to be helpful 

in understanding the evolution of various medical phenomena, as for example the evolution of autoimmune diseases. At 

this moment, DiGeorge Syndrome is the only condition under investigation regarding the contributions of the CPF. 

However, with increased knowledge it should be possible to identify other human syndromes that relate to defects in this 

complex developmental network. Here, we review the current knowledge regarding the evolution of the 

cardiopharyngeal field and show how this knowledge contributes to the understanding of cardiopharyngeal syndromes 

in humans. 
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Introduction 

     Most human syndromes include a multitude of 
abnormalities, which are not easily explained by a single 
gene mutation. A syndrome is defined as “a group of signs 
and symptoms that occur together and characterize a 
particular abnormality” [1]. An observable mix of 

symptoms results usually from a failure in complex 
developmental networks. To understand the occurrence 
of abnormalities in human development the field of 
evolutionary medicine can make important contributions. 
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Evolutionary Medicine 

     Evolutionary Medicine is an interdisciplinary field that 
combines knowledge gained from evolutionary biology, 
developmental biology, medicine, public health and other 
health professions [2]. The knowledge of evolution of 
developmental networks, anatomical structures, and 
physiology, among others, improves the understanding of 
research and practice in medicine and epidemiology [3]. 
There are currently several examples on how 
evolutionary medicine has been proven to be helpful in 
understanding the evolution of antibiotic resistance [4], 
cancer [5,6], autoimmune diseases [7], and other health 
related issues [for more examples see: 2,3,8]. In this 
review, we highlight the research on the 
cardiopharyngeal field and how the knowledge of the 
evolution and development of this field might contribute  
 

to our understanding on why many human syndromes 
often include craniofacial and cardiac anomalies. 
 

Cardiopharyngeal Field 

     Muscles develop from mesodermal cells with a 
myogenic fate, which is determined early in embryonic 
development during mesodermal differentiation. 
Different mesodermal population give rise to different 
muscle groups dependent on signals from surrounding 
tissues and intrinsic activation of specific gene cascades. 
The myogenesis of head muscles differs fundamentally 
from trunk muscles [e.g., 9,10-15]. Based on clonal studies 
in mice, several mesodermal populations were identified 
that give rise to specific muscle groups of the head, neck, 
and heart, which will be the focus of this review (Figure 1) 
[16-18]. 
 

 

Figure 1: Proposed cell lineage tree in mice based on Lescroart et al. [16,18] and Diogo et al. [17]. 
Heads relate to cephalic (branchiomeric + somite derived head muscles) and hearts relate to myocardium derived from 
first heart field (red) and pharyngeal mesoderm (orange for 1st and 2nd pharyngeal arch mesoderm, purple more 
posterior pharyngeal arch mesoderm). Stars indicate common mesodermal progenitor cells. Dark green star is the pan-
cardiopharyngeal progenitor of the cardiopharyngeal field, which gives rise to first heart field and pharyngeal mesoderm 
(light green star; Diogo et al. [17]). The latter includes the second heart field derived myocardium (orange hearts) and the 
branchiomeric mesoderm, which gives rise to muscles of the 1st and 2nd branchial arch (muscles of mastication, muscles 
of facial expression). Other mesodermal lineages also contribute to both cephalic neck and heart musculature, which 
correlate to posterior pharyngeal arch mesoderm (purple, probably 3rd-6th pharyngeal arch) and somite-derived 
mesodermal linages (blue star). The correlation of the latter two population to the cardiopharyngeal field has still to be 
elucidated. However, it is clear that they arise more posterior than the cardiopharyngeal mesodermal progenitors. Genes 
indicated in blue are essential markers for the specific mesodermal populations, however, the number of genes involved 
in CPF differentiation is by far great than shown here. 
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     During the past several years it has become clear that 
the head and heart muscle development underlie complex 
processes, which are more closely linked to each other 
than previously thought [e.g., 15,16,18,19,20-25]. Those 
insights were summarized and led to the concept of the 
cardiopharyngeal field (CPF) [17]. The CPF is an area that 
contains the anterior lateral mesoderm of the first heart 
field and the adjacent pharyngeal mesoderm that 
differentiates into the second heart field -derived regions 
of the heart and branchiomeric muscles [Figure 1; 17,26]. 
The vertebrate heart starts its development as a tube 
formed by a population of precursor cells called first heart 
field (FHF). The adjacent second heart field (SHF), located 
in the pharyngeal mesoderm, gives rise to cells that are 
gradually added to the forming heart [27]. Portions of the 
heart tube originating from the FHF progenitor cells later 
form the left ventricle and parts of the atria. The cells 
from the SHF differentiate to heart muscle tissue 
(myocardium) of the right ventricle, the main portion of 
the atria and the outflow tract [19,20,28]. The anterior 
populations of progenitor cells of the SHF contribute to 
the arterial pole of the heart and the posterior 
populations to the venous pole [29]. 
 
     The pharyngeal mesoderm gives rise to either skeletal 
muscles, i.e. branchiomeric muscles, or cardiac muscle 
(SHF-derived regions) dependent on the signals upon 
adjacent tissues such as neural crest cells (NCCs), 
pharyngeal endoderm or surface ectoderm [e.g., 21,25,30-
32]. In turn, the cranial mesoderm is influencing NCC 
migration [33]. NCCs are crucial for the proper regulation 
of the CPF development: they control the arrangement of 
SHF-derived cells to the arterial pole of the heart, outline 
branchiomeric muscle patterns through neural crest 
derived mesenchyme, and give rise to the associated 
tendons and fascia [e.g., 31,34-36]. There are many 
syndromes that show a combination of cardiac and 
craniofacial malformations that can be related to NCCs 
[37,38].  
 
     The cardiac and branchiomeric muscle development 
from the common pool of mesodermal progenitor cells is 
coordinated by regulatory factors [reviewed by 17]. 
Within the CPF is an overlapping expression of genes that 
specify head muscles [e.g. Tbx1, MyoR (Msc), Pitx2 and 
Tcf21 (Capsulin)] and cardiogenic regulatory factors [e.g., 
Nkx2-5, Isl1 (Islet1)] (Figure 1) [21,25,39,40]. Tbx1 plays a 
crucial role in extending the heart’s arterial pole by 

stimulating proliferation and delaying differentiation of 
SHF cells [41 and citations within]. It is also important for 
the activation of branchiomeric myogenesis and may 
directly regulate MyoD [42,43]. Furthermore, Tbx1 acts 
upstream of Lhx2, a gene encoding a LIM- homeodomain 
protein, within a complex regulatory network that 
specifies cardiopharyngeal progenitors. Another gene 
encoding a LIM-homeodomain protein is Isl1, which is 
expressed in the mesoderm of pharyngeal arches and 
SHF. Ils1 seems to delay the differentiation of 
branchiomeric muscles; however, progenitor cells that 
express Isl1 contribute to heart and branchiomeric 
muscles, but not to extrinsic eye muscles or 
hypobranchial muscles [25,40]. This shows the important 
role of Isl1 as marker for a discrete subset of CPF cells that 
are distinct progenitors of cardiovascular and skeletal 
muscle [40]. Nkx2-5 is a cardiac transcription factor that 
regulates the proliferation in the SHF and it modulates, 
together with Isl1, SHF progenitor-specific gene 
expression [44,45].  
 
     Clonal analyses in mice showed that SHF-derived 
regions of the heart are developmentally more closely 
related to branchiomeric muscles than to the FHF-derived 
regions of the heart [17,18,26,46]. This is supported by 
the observation that cardiac lineages contributing to the 
FHF and SHF diverge before the expression of Mesp1 
during early gastrulation [47,48]. Based on those and 
other studies, the head muscles in humans can now be 
described as at least seven groups (Figure 2) [49]: 1. 
mandibular arch muscles and cells related to the right 
ventricle; 2. left hyoid arch muscles and cells related to 
myocardium at the base of the pulmonary trunk; 3. right 
hyoid arch muscles and cells related to myocardium at the 
base of the aorta; 4. left muscles of the 3rd to 6th 
pharyngeal arch, including laryngeal and pharyngeal 
muscles, the neck muscles trapezius and 
sternocleidomastoideus, and cells related to the base of 
the pulmonary trunk and part of left atrium; 5. right 
muscles of the 3rd to 6th pharyngeal arch, including 
laryngeal and pharyngeal muscles, the neck muscles 
trapezius and sternocleidomastoideus, and cells related to 
the superior vena cava and part of right atrium; 6. 
extraocular muscles; and 7. Hypobranchial muscles, 
including tongue and infrahyoid muscles that derive from 
somites and migrate into the head and neck [16-18,50-
52]. 
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Figure 2: Developmental correlation of specific head muscle groups and specific myocardial regions. Same colors indicate 
a closer developmental relationship based on clonal descendants from a common progenitor. For example, purple 
muscles of mastication (mandibular arch or first pharyngeal arch) are closer correlated to the myocardium of the right 
ventricle than to other head muscles. The muscles of facial expression on the left side of the face are partially removed 
(green). Modified and with permission from Diogo, et al. [49]. 
 
     The FHF and SHF both have a common mesodermal 
progenitor [46], but the evolutionary origin of this 
common field was just recently discovered [17]. The 
closer correlation of cell lineages that give rise to 
branchiomeric muscles and myocardium were shown to 
also exist in the urochordate ascidian Ciona [53], and in 
the amniotes chicken and mice [20,26,39,40,48]. 
Urochordates are the closest sister-group of vertebrates 
[54]. Studies have shown that the gene regulatory 
network underlying the differentiation of pharyngeal 
muscles and myocardium in ascidians is similar to the one 
in vertebrates. The ascidian heart derives in early 
embryogenesis from two Mesp expressing cells (B7.5 
cells), which give rise to four embryonic trunk ventral 
cells (TVCs) [55]. Those TVCs express genes homologous 
to the vertebrate genes Nkx2-5, Hand [55,56], Gata4, 5 and 
6 [57] and migrate towards the pharyngeal endoderm 
[58-60]. This is followed by an asymmetrical division that 
produces heart precursors and secondary ventral cells. 
The latter cells divide again and give rise to second heart 
precursors and atrial siphon muscles; the latter 
correspond to branchiomeric muscles in vertebrates 
[23,53,61]. Thus, TVCs are cardiopharyngeal progenitors 
that produce cardiac and pharyngeal muscles, following a 
clonal pattern reminiscent of that seen in mice [61,62]. 
 
     Thus, the CPF likely evolved in the last common 
ancestor of Olfactores (Olfactores = Vertebrata + 
Urochordata) [17]; which emerged ca. 514 million years 

ago [63], but some of the mechanisms were likely present 
even earlier [17]. The knowledge regarding the evolution 
of the CPF and the gene regulatory network underlying 
the muscular differentiation had profound implications 
for the reconstruction of the origin and early evolution of 
the vertebrate muscular system [64]. Furthermore, 
understanding the molecular basis of craniofacial and 
heart development is an important research area, because 
malformation of both systems are among the most 
frequent congenital defects in humans [65].  
 

Cardiopharyngeal Syndromes 

     Many human syndromes include both craniofacial and 
cardiac abnormalities. Syndromes that are likely caused 
by defects in the gene regulatory network underlying the 
mesodermal differentiation of the CPF are called 
cardiopharyngeal syndromes. Importantly, those 
syndromes will also show other malformations not 
related to the CPF as genes are usually not only expressed 
at one location during development. To our knowledge, 
only the DiGeorge Syndrome is currently under 
investigation regarding the contributions of the CPF. The 
DiGeorge Syndrome is a developmental defect caused by a 
microdeletion of chromosome 22q11.2. It is also known 
as velocardiofacial syndrome, CATCH22 [66], or 22q11 
Deletion Syndrome (22q11DS) and has an estimated 
prevalence of 1 in 3,000-6,000 births, what makes it to 
one of the most common microdeletion syndromes [67]. 
The microdeletion of the chromosome 22q11.2 causes the 
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compromise of the Tbx1 gene [68], which is important for 
the specification of the pharyngeal mesoderm [43] that 
gives rise to the SHF-derived myocardium and 
branchiomeric muscles (Figure 1). For the DiGeorge 
Syndrome over 180 associated anomalies have been 
described [69]. Those anomalies include often cardiac 
anomalies, palatal anomalies, developmental delay, and 
immune deficiency; not as common are feeding problems, 
renal anomalies, and psychiatric disorders, among others. 
However, none of these features are obligatory or present 
in all patients [69]. Due to the diversity of symptoms, the 
clinical diagnosis is usually confirmed by a routine test 
available in most cytogenetic laboratories [70]. 
 
     To find other potential cardiopharyngeal syndromes, 
we performed an extensive search of syndromes that 
show a combination of cranial and cardiac muscle defects 
and analyzed if they are likely caused by developmental 
defects related to the differentiation from the CPF. We 
began our search by using a keyword search in Google 
Scholar. Initially we searched for the following keywords 
and combination of them: human; genetics; head muscles; 

heart muscle; heart; branchiomeric muscles; diseases; 
anomalies; syndrome; variations; face malformation; 
cardiovascular defects; craniofacial anomalies; face 
defect; heart defect; craniofacial muscle patterning; facial 
muscle deformation; craniofacial defect. One typical 
search combination was for example: “head + heart + 
malformation + human” or “head + heart + syndrome”. 
 
     This search revealed thousands of results, and we 
identified many potentially interesting syndromes. From 
this list, we searched for specific syndromes and decided 
to take a closer look at syndromes with the most google 
scholar hits (Table 1). We refined the search by using the 
syndromes’ common name(s) and restricted the search to 
the past ten years. In those ten years, we were looking for 
review article summarizing the knowledge so far and 
searched then for articles that are newer than the latest 
review. Finally, we restricted the search to the time since 
the publication of the CPF in 2015 [17] to determine of 
any syndromes were already under investigation 
regarding disturbances of the CPF differentiation. 
 

Syndrome Google scholar since 2007 since 2015 

Williams Syndrome 2,800,000 1,260,000 38,400 

Down Syndrome 2,850,000 1,340,000 74,300 

CHARGE Syndrome 1,750,000 416,000 20,100 

Costello Syndrome 86,100 23,800 13,400 

Noonan Syndrome 52,800 17,800 9,030 

DiGeorge Syndrome 30,000 16,000 4,360 

22q11 Syndrome 34,700 16,800 6,700 

DiGeorge + 22q11.2 Syndrome 8,880 6,170 1,490 

DiGeorge + cardiopharyngeal 46 44 30 

Fryns Syndrome 23,700 11,800 2,300 

Leopard Syndrome 19,000 12,400 2,720 

Ocular coloboma Syndrome 17,500 8,950 2,250 

Pierre-Robin Syndrome 15,900 8,320 2,070 

Alagille Syndrome 15,400 7,490 1,990 

Wolf Hirschhorn Syndrome 9,120 5,750 1,330 

Sotos Syndrome 8,330 4,550 1,150 

Holt-Oram Syndrome 8,310 4,590 978 

Microsomia Syndrome 8,260 4,490 1,110 

Ellis-van Creveld Syndrome 6,060 3,380 680 

2q13 Syndrome 5,860 3,800 828 
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16q12 Syndrome 4,250 3,020 644 

Axenfeld-Rieger Syndrome 3,260 2,210 527 

Andersen-Tawil Syndrome 1,820 1,540 394 

1q36 Syndrome 402 290 66 

Ritscher-Schinzel Syndrome 371 266 62 

Frank-Ter Haar Syndrome 222 207 45 

Table 1: Human syndromes with craniofacial and cardiac abnormalities, which might be caused by defects in 
developmental processes related to the cardiopharyngeal field (CPF) mesoderm differentiation. DiGeorge syndrome is 
already under investigation regarding the connection of cranial and cardiac development (double underlined). The 
google search was latest updated July 16th, 2017. After searching for the syndromes with the most hits, we restricted our 
search for publications in the past 10 years to find most recent review articles and finally restricted the search to the time 
since the publication of the CPF in 2015 [17]. 
 
     Most of the syndromes identified in Table 1 could not 
be related to the interruption of developmental 
mechanisms linked to the development cardiopharyngeal 
mesoderm. Furthermore, none of the investigated 
syndromes, including DiGeorge Syndrome, could be 
shown to show a left-right correlation of cranial muscle 
malformation and specific heart malformation as would  

be expected by the developmental disturbance of the CPF 
mesoderm. A review of all syndromes listed in Table 1 
would by far exceed the purpose of this review; however, 
we highlight in Table 2 a few syndromes, additionally to 
the above mentioned DiGeorge Syndrome, that might be 
of interest for future research regarding cardiopharyngeal 
syndromes. 
 

Syndrome Pathology Mutation and relation to CPF development 

Axenfeld – 
Rieger 

Syndrome 

Dysplastic arcade mitral valve; mildly 
hypoplastic left ventricular outflow 

tract and aortic arch; ophthalmologic 
anterior segment abnormalities, 

extraocular anomalies incl. dental 
anomalies [71] 

autosomal dominant; involvement of PITX2, 
FOXC1 (=Mf1) [71-73]; Pitx2 homeobox gene 

regulates development of eye muscles, 
branchiomeric muscles, tongue and laryngeal 

muscles, and outflow tract [74, 75]; FoxC1 plays 
an important role for the outflow tract and eye 

muscle development [76,77] 

Holt-Oram 
syndrome 

upper limb defects ranging from 
phocomelia to minor thumb 

anomalies; cardiac defects in 50–95% 
of cases, most often an ostium 

secundum type atrial septal defect 
and conduction anomalies; [78] 

Mutation in TBX5 [78, 79], Tbx5 is essential in 
cardiomyocyte differentiation in concert with 

Nkx2-5 [79] 

CHARGE 
Syndrome 

complex mix of congenital anomalies, 
including craniofacial structures, 
tracheal development, peripheral 
nervous system and some organ 

systems, including the heart [80-83] 

autosomal dominant; heterozygous loss of 
function mutation in CHD7 (see citations on the 

left); CHD7 regulates genes, which are 
important in neural crest guidance and is 

important in the anterior mesoderm during 
cardiovascular development [84,85] 

Ocular 
coloboma 
Syndrome 

cardiac and eye abnormalities 
including presence of ocular 

colobomata [86] 

Oculo-auriculo-vertebral syndrome (OAVS) has 
similar clinical presentations as CHARGE 

Syndrome led to the assumption that here CHD7 
might be also [87]; see above for CHD7 

Table 2: Human syndromes that are potentially cardiopharyngeal syndromes based on the current knowledge of their 
gene mutations. 



Journal of Human Anatomy 

 

Ziermann JM, et al. The Cardiopharyngeal Field in the Light of 
Evolutionary Medicine. J Human Anat 2017, 1(2): 000110. 

                                                                      Copyright© Ziermann JM, et al. 

 

7 

Concluding remarks 

     Numerous genes are involved in the proper 
development of the head and the heart. The signaling 
from surrounding tissue, in particular the neural crest, 
has also a huge impact on the differentiation of 
cardiopharyngeal mesoderm. Here, we presented only a 
fraction of genes relevant for the differentiation of 
musculature derived from the CPF. Most of the knowledge 
we have about the gene regulatory networks during 
development result from studies in developmental 
biology, genetics, and evolutionary biology. The 
combination of those fields with medicine, public health, 
and other health professions leads to evolutionary 
medicine and to a better understanding of complex 
human syndromes. 
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