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Abstract 

Background: Subclinical hypothyroidism does affect fertility. The prevalence of subclinical hypothyroidism is 10-15 

times more common in women than in men. Trace elements play important roles in thyroid function and fertility.  

Objective: The aim of this exploratory study was to evaluate whether significant differences of trace element 

contents exists between female and male thyroids and how they can be related to the etiology of subclinical 

hypothyroidism.  

Methods: Thyroid tissue levels of ten trace elements: silver, cobalt, chromium, iron, mercury, rubidium, antimony, 

scandium, selenium, and zinc were prospectively evaluated in 105 healthy persons (33 females and 72 males). 

Measurements were performed using instrumental neutron activation analysis with high resolution spectrometry of 

long-lived radionuclides. Tissue samples were divided into two portions. One was used for morphological study while 

the other was intended for trace element analysis.  

Results: It was found that content of cobaltin thyroid of females was significantly higher than that of males, while 

contents of rubidiumand zinc were lower. 

Conclusions: Inappropriate content of intra-thyroidal cobalt, rubidiumand zinc can be associated with the etiology of 

female subclinical hypothyroidism. 
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Introduction 

     Adequate thyroid function is important to maintain 
normal reproduction, because thyroid dysfunction 
affects fertility in various ways resulting in abnormal 
ovulatory cycles, luteal phase defects, high prolactin 
levels, and sex hormone imbalances [1,2]. Therefore, 
normal thyroid function is necessary for fertility, and to 
sustain a healthy pregnancy [2]. From large population 
studies, which measured thyroid function, and 
systematic reviews of this subject carried out in the 
1990s to 2010s, it is known that untreated 
hypothyroidism is a common condition all over the 
world [2-10]. The prevalence of subclinical 
hypothyroidism (SCH) is between 1% and 10% in 
different countries [2-10] and almost everywhere it is 
10-15 times more common in women than in men 
[2,4,9]. Form such a great gender-related difference in 
the prevalence of SCH arises a question about a specific 
sensitivity of female thyroid tissue to some external and 
internal factors.  
 
     Although the etiology of SCH and other thyroidal 
disorders is unknown in detail, several risk factors 
including deficiency or excess of such micronutrients as 
iodine (I) has been well identified [11-22]. Besides I 
involved in thyroid function, other trace elements (TE) 
also play important roles such as stabilizers, structural 
elements, maintenance and regulation of cell function, 
gene regulation, enzyme cofactors, activation or 
inhibition of enzymatic reactions, normal peripheral 
utilization of thyroid hormones and regulation of cell 
membrane function [23]. Essential or toxic properties of 
TE depend on tissue-specific need or tolerance, 
respectively [24]. Both TE deficiencies as well as 
overexposures may disturb the thyroidal cell functions 
[24]. 
 
     The reliable data on TE mass fractions in normal 
human thyroid separately for female and male gland is 
apparently extremely limited. There are a few studies 
regarding TE content in human thyroid, using chemical 
techniques and instrumental methods [25-35]. 
However, the majority of these data are based on 
measurements of processed tissue and in many studies 
tissue samples are ashed before analysis. In other cases, 
thyroid samples are treated with solvents (distilled 
water, ethanol etc) and then are dried at a high 
temperature for many hours. There is evidence that 
certain quantities of TE are lost as a result of such 
treatment [36-38]. Moreover, only a few of these studies 
employed quality control using certified/standard 
reference materials (CRM/SRM) for determination of 
the TE mass fractions. Sample-nondestructive technique 
such as instrumental neutron activation analysis with 
high resolution spectrometry of long-lived 
radionuclides (INAA-LLR) is good alternatives for multi-

element determination in the samples of thyroid 
parenchyma. 
 
     This work had three aims. The primary purpose of 
this study was to determine reliable values for such TE 
as silver (Ag), cobalt (Co), chromium (Cr), iron (Fe), 
mercury (Hg), rubidium (Rb), antimony (Sb), scandium 
(Sc), selenium (Se), and zinc (Zn) contents in intact 
(normal) thyroid gland of apparently healthy persons 
using INAA-LLR analysis. The second aim was to 
compare the levels of TE in the thyroid tissue of all 
females and males investigated in the study. The final 
aim was to compare the levels of TE in the thyroid 
tissue of females and males in age group 1 (40 years) 
and in age group 2 (>40 years). 
 
     All studies were approved by the Ethical Committees 
of the Medical Radiological Research Centre, Obninsk. 
 

Material and Methods 

     Samples of the human thyroid were obtained from 
randomly selected autopsy specimens of 33 females 
(European-Caucasian, aged 3.5 to 87 years) and 72 
males (European-Caucasian, aged 2.0 to 80 years). All 
the deceased were citizens of Obninsk and had 
undergone routine autopsy at the Forensic Medicine 
Department of City Hospital, Obninsk. Age ranges for 
subjects were divided into two age groups, with group 1 
(40 years), and group 2 (>40 years). For females in 
group 1 (n=11) mean age (±standard error of mean, 
SEM) was 30.9±3.1 years and in group 2 (n=22) mean 
age was 66.3±2.7 years. For males in group 1 (n=36) 
mean age was 22.5±1.4 years and in group 2 (n=36) 
mean age was 52.4±2.4 years. These groups were 
selected to reflect the condition of thyroid tissue in the 
children, teenagers, young adults and first period of 
adult life (group 1) and in the second period of adult life 
as well as in old age (group 2). The available clinical 
data were reviewed for each subject. None of the 
subjects had a history of an intersex condition, 
endocrine disorder, or other chronic disease that could 
affect the normal development of the thyroid. None of 
the subjects were receiving medications or used any 
supplements known to affect thyroid trace element 
contents. The typical causes of sudden death of most of 
these subjects included trauma or suicide and also acute 
untreated illness (cardiac insufficiency, stroke, 
embolism of pulmonary artery, alcohol poisoning).  
 
     All right lobes of thyroid glands were divided into 
two portions using a titanium scalpel [39]. One tissue 
portion was reviewed by an anatomical pathologist 
while the other was used for the ChE content 
determination. A histological examination was used to 
control the age norm conformity as well as the 
unavailability of microadenomatosis and latent cancer. 
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After the samples intended for TE analysis were 
weighed, they were freeze-dried and homogenized [40-
42]. The pounded sample weighing about50 mg was 
used for trace element measurement by INAA-LLR. The 
samples for INAA-LLR were wrapped separately in a 
high-purity aluminum foil washed with rectified alcohol 
beforehand and placed in a nitric acid-washed quartz 
ampoule. 
 
     To determine contents of the TE by comparison with 
a known standard, biological synthetic standards (BSS) 
prepared from phenol-formaldehyde resins were used 
[43]. In addition to BSS, aliquots of commercial, 
chemically pure compounds were also used as 
standards. Ten certified reference material IAEA H-4 
(animal muscle) and IAEA HH-1 (human hair) sub-
samples weighing about 50 mg were treated and 
analyzed in the same conditions that thyroid samples to 
estimate the precision and accuracy of results. 
 
     A vertical channel of nuclear reactor was applied to 
determine the content of Ag, Co, Cr, Fe, Hg, Rb, Sb, Sc, Se, 
and Zn by INAA-LLR. The quartz ampoule with thyroid 
samples, standards, and certified reference material 
was soldered, positioned in a transport aluminum 
container and exposed to a 24-hour neutron irradiation 
in a vertical channel with a neutron flux of 1.31013 
ncm-2s-1. Ten days after irradiation samples were 
reweighed and repacked. 
 
     The samples were measured for period from 10 to 30 
days after irradiation. The duration of measurements 
was from 20 min to 10 hours subject to pulse counting 

rate. The gamma spectrometer included the 100 cm3 Ge 
(Li) detector and on-line computer-based MCA system. 
The spectrometer provided a resolution of 1.9 keV on 
the 60Co 1332 keV line. Details of used nuclear reactions, 
radionuclides, and gamma-energies were presented in 
our earlier publications concerning the INAA chemical 
element contents in human prostate and scalp hair [44-
48].  
 
     A dedicated computer program for INAA mode 
optimization was used [49]. All thyroid samples were 
prepared in duplicate, and mean values of TE contents 
were used in final calculation. Using Microsoft Office 
Excel software, a summary of the statistics, including, 
arithmetic mean, standard deviation, standard error of 
mean, minimum and maximum values, median, 
percentiles with 0.025 and 0.975 levels was calculated 
for TE contents in thyroid tissue samples of females and 
males. The difference in the results between females 
and males (age group 1 and 2 combined), as well as 
between females and males separately in age group 1 
and group 2 was evaluated by the parametric Student’s 
t-test and non-parametric Wilcoxon-Mann-Whitney U-
test. 
 

Results 

     (Table 1) depicts our data for Ag, Co, Cr, Fe, Hg, Rb, 
Sb, Sc, Se, and Zn mass fractions in ten sub-samples of 
IAEA H-4 (animal muscle) and IAEA HH-1 (human hair) 
certified reference material and the certified values of 
this material. 

 

Element 
IAEA H-4 animal muscle This work results IAEA HH-1 human hair This work results 

95% confidence interval M±SD 95% confidence interval M±SD 
Ag - 0.033±0.008 0.19b 0.18±0.05 
Co 0.0027b 0.0034±0.0008 5.97±0.42a 5.4±1.1 
Cr 0.06b 0.071±0.010 0.27b ≤0.3 
Fe 49.1±6.5a 47.0±1.0 23.7±3.1a 25.1±4.3 
Hg 0.014b 0.015±0.004 1.70±0.09a 1.54±0.14 
Rb 18.7±3.5a 23.7±3.7 0.94b 0.89±0.17 

Sb 0.0056b 0.0061±0.0021 0.031b 0.033±0.009 

Sc 0.0059b 0.0015±0.0009 - - 

Se 0.28±0.08a 0.281±0.014 0.35±0.02a 0.37±0.08 

Zn 86.3±11.5a 91±2 174±9a 173±17 

Table 1: Neutron activation analysis data of trace element contents in certified reference material IAEA H-4 (animal 
muscle) and IAEA HH-1 (human hair) compared to certified values ((mg/kg, dry mass basis). 
M – arithmetical mean, SD – standard deviation, a – certified values, b – information values. 
 
     (Table 2) presents certain statistical parameters 
(arithmetic mean, standard deviation, standard error of 
mean, minimal and maximal values, median, percentiles 

with 0.025 and 0.975 levels) of the Ag, Co, Cr, Fe, Hg, Rb, 
Sb, Sc, Se, and Znmass fractionin normal thyroid tissue 
of female and male. 
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Gender Element M SD SEM Min Max Median P 0.025 P 0.975 

Males 
n=72 

Ag 0.0156 0.0155 0.0021 0.0017 0.08 0.0104 0.0018 0.0661 

Co 0.0352 0.0234 0.0031 0.0046 0.124 0.0302 0.0113 0.101 

Cr 0.52 0.286 0.041 0.13 1.3 0.414 0.152 0.98 

Fe 222 96 12 51 487 221 76.1 432 

Hg 0.0461 0.0391 0.0053 0.0091 0.18 0.0324 0.0102 0.15 

Rb 7.89 4.56 0.58 2.24 29.4 6.86 2.73 18.2 

Sb 0.108 0.076 0.01 0.0047 0.308 0.0965 0.0095 0.291 

Sc 0.0051 0.0036 0.0012 0.0005 0.0118 0.0044 0.0007 0.0112 

Se 2.36 1.34 0.17 0.53 5.8 1.96 0.804 5.7 

Zn 103 43 5.5 34 221 94.6 40.5 200 

Females 
n=33 

Ag 0.014 0.0093 0.002 0.0012 0.0331 0.013 0.0021 0.0321 

Co 0.0505 0.0322 0.0064 0.017 0.14 0.0405 0.0183 0.13 

Cr 0.573 0.246 0.049 0.29 1.22 0.488 0.303 1.11 

Fe 232 112 22 63 512 199 64.8 480 

Hg 0.0329 0.0246 0.0051 0.0065 0.1 0.0263 0.0079 0.1 

Rb 6.16 2.42 0.48 1.11 12.8 6.3 2.38 10.8 

Sb 0.116 0.063 0.012 0.0115 0.248 0.108 0.0183 0.247 

Sc 0.0042 0.004 0.0012 0.0002 0.0143 0.0032 0.0003 0.0124 

Se 2.22 1.19 0.23 0.439 5.32 2.07 0.773 4.85 

Zn 85.7 38 7.44 8.1 166 83 22.9 156 

Table 2: Some statistical parameters of Ag, Co, Cr, Fe,Hg, Rb, Sb, Sc,Se, and Znmass fractions (mg/kg, dry mass basis) 
in normal thyroid tissue of females and males. 
M – arithmetic mean, SD – standard deviation, SEM – standard error of mean, Min – minimum value, Max – maximum 
value, P 0.025 – percentile with 0.025 level, P 0.975 – percentile with 0.975 level. 
 
     The comparison of our results with published data 
for Ag, Co, Cr, Fe, Hg, Rb, Sb, Sc, Se, and Znmass fraction  

in normal human thyroid is shown in Table 3. 

 

Element 

This work Published data [Reference] 

Males and females 
M±SD 

Median of means 
(n)* 

Minimum of means M or 
 M±SD, (n)** 

Maximum of means M or 
 M±SD, (n)** 

Ag 0.015±0.014 0.25 (12) 0.000784 (16) [26] 1.20±1.24(105) [27] 

Co 0.040±0.027 0.34 (17) 0.026±0.031 (46) [28] 70.4±40.8 (14) [29] 

Cr 0.54±0.27 0.69 (17) 0.105 (18) [30] 24.8±2.4 (4) [31] 

Fe 225±100 252 (21) 56 (120) [32] 2444±700 (14) [29] 

Hg 0.042±0.036 0.08(13) 0.0008±0.0002(10) [33] 396±40 (4) [31] 

Rb 7.4±4.1 12.3 (9) ≤0.85 (29) [33] 294±191 (14) [29] 

Sb 0.111±0.072 0.105 (10) 0.040±0.003(-) [34] 4.0 (-) [35] 

Sc 0.0046±0.0038 0.009 (4) 0.0018±0.0003(17) [36] 0.0135±0.0045 (10) [33] 

Se 2.32±1.29 2.61 (17) 0.95±0.08(29) [33] 756±680 (14) [29] 

Zn 97.8±42.3 118 (51) 32(120) [32] 820±204 (14) [29] 

Table 3: Median, minimum and maximum value of means of Ag, Co, Cr, Fe, Hg, Rb, Sb, Sc, Se, and Zn contents in normal 
thyroid according to data from the literature in comparison with our results (mg/kg, dry mass basis). 
M –arithmetic mean, SD – standard deviation, (n)* – number of all references, (n)** – number of samples. 
 
     The ratios of means and the difference between mean 
values Ag, Co, Cr, Fe, Hg, Rb, Sb, Sc, Se, and Zn mass 
fractions in normal thyroid of females and males are 
presented in Table 4. Because, in our previous studies 

age-dependents of many TE in thyroid gland was found 
[50-53], the comparison between TE contents in thyroid 
of females and males separately in age group 1 and in 
age group 2 was also performed (Tables 4-6).  
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Element 
Thyroid tissue Ratio 

Males 2.0-80 years n=72 Females 3.5-87 years n=33 Student’s t-test p U-test p Females to Males 

Ag 0.0156±0.0021 0.0140±0.0020 0.586 >0.05 0.9 

Co 0.0352±0.0031 0.0505±0.0064 0.039 0.01 1.43 

Cr 0.520±0.041 0.573±0.049 0.411 >0.05 1.1 
Fe 222±12 232±22 0.692 >0.05 1.05 

Hg 0.0461±0.0053 0.0329±0.0051 0.079 >0.05 0.71 

Rb 7.89±0.58 6.16±0.48 0.024 0.01 0.78 

Sb 0.108±0.010 0.116±0.012 0.649 >0.05 1.07 
Sc 0.0051±0.0012 0.0042±0.0012 0.59 >0.05 0.82 

Se 2.36±0.17 2.22±0.23 0.633 >0.05 0.94 
Zn 103±5.5 85.7±7.4 0.069 0.05 0.83 

Table 4: Differences between mean values (MSEM) of Ag, Co, Cr, Fe,Hg, Rb, Sb, Sc,Se, and Znmass fraction (mg/kg, 
dry mass basis) in normal thyroid tissue of males and females. 
M – arithmetic mean, SEM – standard error of mean, t-test - Student’s t-test, U-test - Wilcoxon-Mann-Whitney U-test, 
Statistically significant values are in bold. 
 

Element 
Thyroid tissue Ratio 

Males (MG1) n=44 Females (FG1) n=11 Student’s t-test p U-test p FG1/MG1 

Ag 0.0160±0.0032 0.0143±0.0032 0.7 >0.05 0.89 
Co 0.0374±0.0046 0.0328±0.0042 0.467 >0.05 0.88 
Cr 0.502±0.051 0.567±0.065 0.441 >0.05 1.13 
Fe 224±16 172±22 0.078 0.05 0.77 

Hg 0.0439±0.0071 0.0275±0.0046 0.058 >0.05 0.63 

Rb 7.96±0.61 4.95±0.58 0.0011 0.01 0.62 
Sb 0.109±0.012 0.0880±0.0096 0.174 >0.05 0.81 
Sc 0.0052±0.0012 0.0026±0.0017 0.32 >0.05 0.5 
Se 2.05±0.18 1.86±0.27 0.565 >0.05 0.91 
Zn 102±6.6 59.8±8.7 0.0008 0.01 0.59 

Table 5: Differences between mean values (MSEM) of Ag, Co, Cr, Fe,Hg, Rb, Sb, Sc,Se, and Znmass fraction (mg/kg, 
dry mass basis) in normal thyroid tissue of males and females aged 40 years. 
M – arithmetic mean, SEM – standard error of mean, t-test - Student’s t-test, U-test - Wilcoxon-Mann-Whitney U-test, 
Statistically significant values are in bold. 
 

Element 

Thyroid tissue Ratio 

Males (MG2) 
n=28 

Females (FG2) 
n=22 

Student’s t-test 
p 

U-test 
p 

FG2/MG2 

Ag 0.0148±0.0019 0.0138±0.0027 0.753 >0.05 0.93 
Co 0.0317±0.0031 0.0644±0.0096 0.005 0.01 2.03 
Cr 0.548±0.070 0.578±0.073 0.767 >0.05 1.05 
Fe 218±19 279±31 0.105 >0.05 1.28 
Hg 0.0491±0.0082 0.0370±0.0084 0.311 >0.05 0.75 
Rb 7.75±1.25 7.05±0.63 0.62 >0.05 0.91 
Sb 0.107±0.018 0.136±0.019 0.276 >0.05 1.27 
Sc 0.0049±0.0024 0.0045±0.0014 0.868 >0.05 0.92 
Se 2.89±0.32 2.48±0.34 0.396 >0.05 0.86 
Zn 104±10 104.7±8.4 0.98 >0.05 1.01 

Table 6: Differences between mean values (MSEM) of Ag, Co, Cr, Fe,Hg, Rb, Sb, Sc,Se, and Znmass fraction (mg/kg, 
dry mass basis) in normal thyroid tissue of males and females aged >40 years. 
M – arithmetic mean, SEM – standard error of mean, t-test - Student’s t-test, U-test - Wilcoxon-Mann-Whitney U-test, 
Statistically significant values are in bold. 
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Discussion 

Precision and Accuracy of Results 

     Good agreement of the Ag, Co, Cr, Fe, Hg, Rb, Sb, Sc, 
Se, and Zncontents analyzed by INAA-LLR with the 
certified data of CRM IAEA H-4 and IAEA HH-1 (Table 1) 
indicates an acceptable accuracy of the results obtained 
in the study of TE of the thyroid presented in Tables 2–
6. 
 
     The mean values and all selected statistical 
parameters were calculated for tenTE (Ag, Co, Cr, Fe, 
Hg, Rb, Sb, Sc, Se, and Zn) mass fractions in thyroid of 
female and male (Table 2).  
 

Comparison with Published Data 

     Values obtained for Cr, Fe, Hg, Rb, Sb, Sc, Se, and Zn 
contents in the normal human thyroid (Table 3) agree 
well with median of mean values reported by other 
researches [25-35]. The obtained means for Ag and Co 
were almost one order of magnitude lower median of 
previously reported means but inside the range of 
means (Table 3). Data cited in Table 3 also includes 
samples obtained from patients who died from different 
non-endocrine diseases. A number of values for TE 
mass fractions were not expressed on a dry mass basis 
by the authors of the cited references. However, we 
calculated these values using published data for water 
(75%) and ash (4.16% on dry mass basis) contents in 
thyroid of adults [27,54]. 
 
     The range of means of Ag, Co, Cr, Fe, Hg, Rb, Sb, Sc, Se, 
and Zn level reported in the literature for normal 
human thyroid vary widely (Table 3). This can be 
explained by a dependence of TE content on many 
factors, including the region of the thyroid, from which 
the sample was taken, age, gender, ethnicity, and mass 
of the gland. Not all these factors were strictly 
controlled in cited studies. Another and, in our opinion, 
leading cause of inter-observer variability can be 
attributed to the accuracy of the analytical techniques, 
sample preparation methods, and insufficient quality 
control of results in these studies.  
 

Gender-Related Differences 

     Strongly pronounced differences in Co, Rb, and Zn 
mass fraction were observed between female and male 
thyroid (Table 4). The mean Co mass fraction in female 
thyroids was almost 1.4 times higher while the means of 
Rb and Zn mass fractions were respectively 22% and 
17% lower than in male thyroids. During the first 40 
years of life (Age group 1) the situation with TE 
contents in female thyroids was some different than 
that for older females. In Age group 1 no statistically 
significant difference between the Co content in female 

and male thyroids was found, but differences between 
their Rb and Zn contents were detected (Table 5). In 
Age group 1 of females with mean age 30.9 years the Rb 
and Zn contents in thyroid were respectively38% and 
41% lower than in thyroid of males from the same age 
group. Moreover, in this age group a modest but 
statistically significant reduced level of Fe mass fraction 
in female thyroids was observed using the non-
parametric Wilcoxon-Mann-Whitney U-test. For ages 
over 40 years (Age group 2) a statistically significant 
difference between the Co content in female and male 
thyroids was observed and the mean Co content in 
female thyroids was 2 times higher than that in male 
thyroids. In Age group 2 differences between the Fe, Rb 
and Zn contents in thyroids of females and males, 
previously found in the Age group 1, was no longer 
evident. 
 
     Because the prevalence of SCHis 10-15 times more 
greater in women than in men, we can accept that the 
levels and relationships of TE mass fractions in male 
thyroids as more suitable (perhaps optimal) for normal 
function of the gland [3,9]. If so, we have to conclude 
that up to age 40 years there is a significant deficiency 
of Rb and Zn contents in female thyroid parenchyma, 
accompanied by a modest deficiency of Fe. In age over 
40 deficiencies of Fe, Rb and Zn contents in female 
thyroid disappear and an excess of Co is now seen.  
 
Cobalt: Co is widely used in a bijouterie production. It 
may be one of the reasons of the higher level of this TE 
content in female thyroids than in that in male thyroids. 
Health effects of high Co occupational, environmental, 
dietary and medical exposure are characterized by a 
complex clinical syndrome, mainly including 
neurological, cardiovascular and endocrine deficits, 
including hypothyroidism [55,56]. Moreover, Co is 
genotoxic and carcinogenic, mainly caused by oxidative 
DNA damage by reactive oxygen species, perhaps 
combined with inhibition of DNA repair [57]. Therefore, 
an excessive Co level in the thyroid of elderly females 
might inhibit thyroid hormonal synthesis.  
 
Iron: The low Fe level in the thyroid of young women 
compared with men can be attributed to physiological 
characteristics of the female body related to 
reproduction and pre-menopausal physiology [45]. 
 
Rubidium: As for Rb, there is very little information 
about its effects in organisms. No negative 
environmental effects have been reported. Rb is only 
slightly toxic on an acute toxicological basis and would 
pose an acute health hazard only when ingested in large 
quantities [58]. Rb has some function in immune 
responce, probably by supporting cell differentiation 
[59,60]. Both potassium (K) and Rb are in the first 
group of the periodic table. Rb, like K, seems to be 
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concentrated in the intracellular space and transfered 
through membrane by the Na+K+-ATPase pump.Thus, 
the low Rb level in the thyroid of women compared with 
men might reflect the reduced ratio “Volume of thyroid 
cells / Volume of follicular colloid” in the female 
thyroid. Thyroid function depends in part on the total 
volume of active thyroid cells. From this it might be 
concluded that the reduced level of active cells in the 
thyroids of women compared to men increases risk of 
hypothyroidism. 
 
Zinc: Zn is a most essential TE for humans. Today more 
than 300 proteins and over 100 DNA-binding proteins 
that require Zn have been classified. Zn is required for 
the synthesis of thyroid hormones, and deficiency of 
this TE can result in hypothyroidism [61,62]. Thus, a Zn 
deficiency in female thyroid parenchyma observed in 
the present study may be one of the reasons for the 
higher incidence of SCH in females in comparison with 
males. 
 

Conclusion 

     Our data indicate that there is a statistically 
significant gender-related difference between TE levels 
in thyroid tissue of females and males. The Co mass 
fraction is higher while the Rb and Zn mass fractions are 
lower in female thyroids compared with those in male 
thyroids. Subclinical hypothyroidism is 
amultietiological and multifactorial complex condition. 
The complete understanding of the role of inadequate 
levels of some TE in thyroid parenchyma in the etiology 
of SCH requires a global vision of their different 
mechanisms of action, which is not yet possible with the 
present state of knowledge. However, from the results 
of our study it follows that an involvement of 
inadequate contents of intra-thyroidal Co, Rb and Zn in 
the etiology of female SCH may be assumed. 
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