

Appendix

MATLAB Source Code

MATLAB Code to read the Light Intensity of Different Parts of Lung function data = read_a_file_BN5207

A = imread('Patient 22.jpg')

% To read the light intensity of bottom left lung row_lower = 100; row_upper = 140; column_lower = 60; column_upper = 125; signal_A = read_fluorescence(A, row_lower, row_upper, column_lower, column_upper);

% To read the light intensity of top right lung row_lower = 60; row_upper = 100; column_lower = 180; column_upper = 240; signal_B = read_fluorescence(A, row_lower, row_upper, column_lower, column_upper);

% To read the light intensity of top left lung row_lower = 50; row_upper = 80; column_lower = 80; column_upper = 130; signal_C = read_fluorescence(A, row_lower, row_upper, column_lower, column_upper);

% To read the light intensity of heart row_lower = 120; row_upper = 160; column_lower = 130; column_upper = 180; signal_D = read_fluorescence(A, row_lower, row_upper, column_lower, column_upper);

data(1).signal = signal_A; data(2).signal = signal_B; data(3).signal = signal_C; data(4).signal = signal_D;

```
data_table = struct2table(data);
writetable(data_table, 'Light intensity reading of different parts of lung P22.xlsx')
```

end

function signal = read_fluorescence(A, row_lower, row_upper, column_lower, column_upper)

```
count = 0;
signal = 0;
```

```
for i = row_lower:1:row_upper
  for j = column_lower:1:column_upper
    num = A(i,j);
    num_64 = uint64(num);
    count = count + num_64;
    end
end
```

```
signal = count;
end
```

Software to Quantify Infected Area

function Bacterial_count_BN5207

```
A = imread('Patient 22.jpg')
k1 = length(A);
```

image(A)

```
% To read the bacterial count of bottom left lung
row_lower = 100;
row_upper = 140;
column_lower = 60;
column_upper = 125;
signal_A = read_fluorescence_level(A, row_lower, row_upper, column_lower, column_upper);
```

```
% To read the bacterial count of top right lung
row_lower = 60;
row_upper = 100;
column_lower = 180;
column_upper = 240;
```

signal_B = read_fluorescence_level(A, row_lower, row_upper, column_lower, column_upper);

% To read the bacterial count of top left lung row_lower = 50; row_upper = 80; column_lower = 80; column_upper = 130; signal_C = read_fluorescence_level(A, row_lower, row_upper, column_lower, column_upper);

% To read the light intensity of heart row_lower = 120; row_upper = 160; column_lower = 130; column_upper = 180; signal_D = read_fluorescence_level(A, row_lower, row_upper, column_lower, column_upper);

% To generate data variable signalA_table = struct2table(signal_A); signalB_table = struct2table(signal_B); signalC_table = struct2table(signal_C); signalD_table = struct2table(signal_D);

writetable(signalA_table, 'Bacterial count of bottom left lung P22.xlsx') writetable(signalB_table, 'Bacterial count of top right lung P22.xlsx') writetable(signalC_table, 'Bacterial count of top left lung P22.xlsx')

end

function signal_count = read_fluorescence_level(A, row_lower, row_upper, column_lower, column_upper)

bacterial_count = 0;
pixel_count = 0;

```
for i = row_lower:1:row_upper
for j = column_lower:1:column_upper
num = A(i,j);
num_64 = uint64(num);
```

if num_64 > 150

```
bacterial_count = bacterial_count +1;
end
```

```
pixel_count = pixel_count + 1;
```

end

end

signal_count(1).value = bacterial_count; signal_count(2).value = pixel_count;

end

Histogram Analysis of Different Parts of the Lung

function Fluorescence_distribution_BN5207

A = imread('Patient 2.jpg') k1 = length(A);

image(A)

```
% To read the light intensity of bottom left lung
row_lower = 100;
row_upper = 140;
column_lower = 60;
column_upper = 125;
signal_A = read_fluorescence_dist(A, row_lower, row_upper, column_lower, column_upper);
```

% To read the light intensity of top right lung row_lower = 60; row_upper = 100; column_lower = 180; column_upper = 240; signal_B = read_fluorescence_dist(A, row_lower, row_upper, column_lower, column_upper);

```
% To read the light intensity of top left lung
row_lower = 50;
row_upper = 80;
column_lower = 80;
column_upper = 130;
```

signal_C = read_fluorescence_dist(A, row_lower, row_upper, column_lower, column_upper);

% To read the light intensity of heart row_lower = 120; row_upper = 160; column_lower = 130; column_upper = 180; signal_D = read_fluorescence_dist(A, row_lower, row_upper, column_lower, column_upper);

% To generate data variable signalA_table = struct2table(signal_A); signalB_table = struct2table(signal_B); signalC_table = struct2table(signal_C); signalD_table = struct2table(signal_D);

writetable(signalA_table, 'Light intensity dist of bottom left lung P2.xlsx') writetable(signalB_table, 'Light intensity dist of top right lung P2.xlsx') writetable(signalC_table, 'Light intensity dist of top left lung P2.xlsx') writetable(signalD_table, 'Light intensity dist of heart P2.xlsx')

end