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Abstract 

There is evidence that statins which are mainly used in treatments of dyslipidemia can be used for attenuating symptoms 

of cardiovascular and neurodegenerative diseases. Lovastatin and other statins are known to function through inhibition 

of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase which is involved in the majority processes such as cell 

differentiation, proliferation and migration. Recently it was revealed that lovastatin is effective in the reducing total and 

low-density-lipoprotein cholesterol, lowering the risks of post-surgical complications and mitigation of anticancer drugs’ 

side effects. Moreover, there are other combinations with other drugs to treat cardiovascular diseases. In addition, anti-

inflammatory and immunomodulatory effects of lovastatin diminish neurological disorders such as multiple sclerosis 

(MS). Especially, combination treatment of lovastatin and rolipram in suboptimal doses is considered to be the most 

promising approach for protecting neuronal axons from demyelination and promoting neuro repair in MS. Although 

lovastatin demonstrates promising option for treatment of cardiovascular and neurological diseases, more clinical trials 

and studies in vivo and in vitro are required. 
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Introduction 

3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) 
reductase inhibitors or statins can be used in treatments 
of different diseases. The main purpose of using statins is 
considered to be lowering the elevated different types of 
cholesterol levels. Starting from the ninetieth several 
studies discovered lovastatin as a promising tool for the 
treatment of various disorders such as dyslipidemia, 
neurodegenerative and cardiovascular diseases [1-6]. 

 
The ability of lovastatin to promote the treatments is 

justified on its pleiotropic effects. Inhibition of HMG-CoA 

reductase takes significant role in mevalonic acid 
pathway. Mevalonate acts as a precursor for both 
steroidal and non-steroidal isoprenoid intermediates. 
Cholesterol being the steroid has been already verified to 
be modulated by lovastatin in previous studies. On the 
other hand, non-steroidal isoprenoids affect proteins such 
as heterotrimeric G-proteins, HM-A, small GTP-bound 
protein Ras, and Ras-like proteins contributing to the 
intracellular signalling pathways of cell proliferation, 
myelination, cytoskeleton arrangement and endocytotic-
exocytotic transport [7]. Therefore, since lovastatin has 
an impact on the mevalonate pathway it can indirectly 
change cell survival. The focus of this review paper is 
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investigation of novel applications and effects of 
lovastatin in cardiovascular and neurological diseases. 
The administration of lovastatin alone and in combination 
with other drugs will be also presented with explanation 
of lovastatin activity mechanisms.  
 

Effects of Lovastatin on Cardiovascular 
Diseases  

The statin is widely used in the treatment of different 
cardiovascular diseases (CVDs) mostly by lowering 
increased total cholesterol (TC), low-density-lipoprotein 
(LDL) cholesterol and triglycerides (TG) levels in blood. 
According to several meta-analyzes, statins are able to 
reduce the risks of major vascular events with 
approximately the same effectivity in both of the lowest 
risk categories and the higher risk categories [8-11]. The 
occurrence of major coronary events during 5 year period, 
coronary revascularisations, and ischaemic strokes was 
observed to be diminished after statin treatment affecting 
mainly LDL cholesterol levels [8-11]. Additionally, statins 
are administered for other purposes except the 
diminishing the cholesterol levels. In this section we 
attempted to analyze most novel mechanisms and 
purposes of lovastatin administration in treatments of 
common CVDs. 
 

Mechanisms of Actions of Lovastatin in the 
Treatment of Cardiovascular Diseases  

Targeting High Levels of Low-density-
lipoprotein Cholesterol  

There are several mechanisms proposed how 
lovastatin can contribute to treatment of heart-related 
diseases. One of such mechanisms has been suggested by 
recent study investigated how exposure to three statins 
(i.e. lovastatin, atorvastatin and pravastatin) affected the 
complex formation between proprotein convertase 
subtilisin-kexin 9 (PCSK9) and the low density lipoprotein 
receptor (LDLR), which is known to be important in 
degradation of LDLR in lysosomes. The expression of 
PCSK9 indirectly downregulates the LDL cholesterol 
levels in the blood through the receptor-mediated 
endocytosis mechanism [12-14]. As soon as LDL 
cholesterol molecule is bound to LDLR expressed on the 
surface of cells, the PCSK9 associates to this complex and 
assists with intake of the cholesterol molecule by 
endosomal pathway [15]. Endosomes further fuse with 
lysosomes where degradation of both proteins occurs. It 
was established that lovastatin and atorvastatin induced 
expression of PCSK9 and consequently resulted in 
lowering the LDL cholesterol concentrations, whereas 

pravastatin effect was opposite [15]. So, high LDL 
cholesterol levels in CVDs can be counteracted by 
lovastatin treatment.  
 

Prevention of Post-surgical Complications  

There is evidence of effective usage of statins after 
cardiovascular interventions in order to reduce 
postsurgical complications related to CVDs [16-18]. 
Although lovastatin is known to augment CVD treatments 
by mitigation of LDL cholesterol levels, the activity of 
lovastatin could be also explained by cholesterol-
independent cardioprotective mechanism. Graft failure 
after the bypass surgery or angioplasty are one of those 
cases that frequently result in intimal hyperplasia and 
atherosclerosis which arise from vascular smooth muscle 
cells’ (SMCs) dedifferentiation [19-21]. Since vascular 
SMCs preserve plasticity even after acquiring 
differentiated state expressing specific repertory of 
contractile proteins, ion channels and signaling molecules, 
dedifferentiation of SMCs’ phenotype occurs as a response 
to vascular injuries after bypass surgery [22,23]. It was 
demonstrated that the complications after surgical 
intervention such as intimal hyperplasia and 
atherosclerosis are treatable with lovastatin use [24].  

 
Wagner and colleagues [2010] established that 

lovastatin inhibits farnesylation of Ras homologue 
enriched in brain (Rheb) by blocking the activity of 
farnesyltransferase. Farnesylation is one type of 
prenylation where the farnesyl group (15-carbon 
isoprenoid) is covalently attached to cysteine residues 
near or at C-terminus of protein [25]. That in turn inhibits 
the activity of the mammalian target of rapamycin 
complex 1 (mTORC1) which is essential in vascular SMC 
transcription initiation under the additional action of 
growth factors, particular amino acids and energy stages 
[26-28]. By inhibiting the mTORC1 the modulation of 
vascular SMCs in intimal hyperplasia is held by 
differentiating SMCs to normal state of contraction. Thus, 
mTORC1 signaling pathway is suggested to be one of the 
mechanisms of lovastatin effects, allowing novel ways in 
cardiovascular treatments to emerge.  
 

Attenuation of Anthracycline Cardiotoxicity 
Side-Effects 

Another efficacious application of lovastatin has been 
shown in the alleviation of side-effects of anticancer 
treatments such as anthracyclines. The doxorubicin, an 
anthracycline derivative, is widely used in antineoplastic 
therapy [29]. However, doxorubicin besides its positive 
effects in anticancer treatment, also, leads to congestive 
heart diseases due to cardiomyopathy and liver damage 
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[30-36]. The acute (within 1-3 days), subacute (within 
weeks) and delayed cardiotoxicity is observed during 
dose-dependent doxorubicin application [34-37]. 
Congestive heart diseases results due to increased 
prolonged cardiotoxicity which was acquired through 
upregulation of interleukin 6 (IL-6), connective tissue 
growth factor (CTGF), brain natriuretic peptide (BNP) and 
heat shock protein A1B (Hspa1b) RNA in doxorubicin 
treatment (29). In addition, because of inhibition of 
topoisomerase II activity by doxorubicin, there was 
production of reactive oxygen species (ROS) and nitric 
oxide synthases (NOS) that contribute to doxorubicin 
cardiotoxicity [31,38-40]. Weinstein, et al. [41], Cole, et al. 
[42] and Chaiswing, et al. [43] proposed alternative 
solution being co-treatment for doxorubicin with 
antioxidant called dexrazoxane. However, the 
dexrazoxane demonstrated opposite effects to expected 
ones exaggerating the side-effect cardiotoxicity of 
doxorubicin. On the other hand, LDL cholesterol lowering 
lovastatin treatment illustrated the results of significant 
mitigation of cardiotoxicity when used as co-treatment 
with doxorubicin [34,44,45]. Lovastatin is believed to 
operate on reducing IL-6, CTGF, BNP and Hspa1b RNA 
expression by repressing Rac1 signaling pathway 
[33,34,46,47]. Doxorubicin upregulates expression of 
Rac1 which was observed to adduce to cardiomyocytes’ 
apoptotic death and result in myocardial dysfunction by 
its NADPH oxidase activity and consequent ROS 
generation [48]. Therefore, inhibition of Rac1 by 
lovastatin is one of the promising approaches to ease the 
cardiotoxic side-effects of doxorubicin.  
 

Concomitant Adverse Effects of Lovastatin  

Upon the treatment of CVDs based on targeting 
reduction of total cholesterol (TL) and LDL cholesterol by 
statin application, there might be concerns about its own 
side-effects. Diabetes mellitus type 2, renal injury and 
myopathy rarely presented in form of rhabdomyolysis are 
the most recognized adverse effects of statin treatment 
[49-51]. Although, there are various side effects of statin 
treatment, it is believed that its significant effects on CVDs 
therapy outweigh presented side-effects. Moreover, it was 
established that statins do not elevate risks of cognitive 
disease and progression of cancer [50].  
 

Combinatorial Treatments of Lovastatin 
with other Drugs in CVDs Treatment  

Lovastatin is seen to be also used in combinations with 
other drugs to improve CVDs treatments. Lovastatin with 
cholestyramine and lovastatin with colestipol are ones of 
effective combinations used in order to reduce lesions 

after coronary bypass surgery [52-55]. In addition, 
Alsheikh-Ali and Karas et al. [16] observed that the 
combination of lovastatin and niacin brought the same 
liver damage and rhabdomyolysis progression as in the 
lovastatin and niacin treatments used separately and 
demonstrated that these adverse effects are more 
manifested in simvastatin treatment. Nevertheless, there 
are combinations that can result in ameliorated CVDs 
treatment methods, physicians are still concerned with 
adverse outcomes that these combinations can cause; 
thus, more studies are required to clarify the efficacy of 
complementary administration of lovastatin with other 
drugs. 

 
From all mentioned above it can be concluded that the 

lovastatin treatment gives perspective opportunities for 
treating various CVDs by the help of its pleiotropic 
activities. It was noted that there were eight most cited 
studies [1-6,56,57] all of them indicating that lovastatin is 
one of the effective statins that positively influence the 
treatment of coronary atherosclerosis and cardiovascular 
events. However, the validity of those studies’ results can 
be put under questioning, since all of them were 
performed between 1991 and 1999 and concomitant 
therapies such as blood pressure lowering, diuretics, 
anticoagulants were used in different way compared to 
care standard to date back [10]. Therefore, there is a 
necessity of new clinical trials with higher sample sizes to 
investigate the effect of lovastatin use in CVDs therapy 
methods.  
 

Effect of Lovastatin to Neurodegenerative 
Diseases  

Multiple Sclerosis  

Early studies have revealed that lovastatin in addition 
to lipid-lowering effects, have anti-inflammatory and 
immunomodulatory characteristics [58]. These 
characteristics of statins are suggested to have valuable 
effects for immune mediated neurological abnormalities. 
In this section we will focus on the mechanisms and 
effects of two drug combination treatments with 
lovastatin on the multiple sclerosis neurological disease. 
Multiple sclerosis (MS) is a demyelinating disease of 
central nervous system (CNS) that leads to motor, sensory 
and cognitive impairment. There are variety of studies 
that indicated both genetic and environmental factors to 
have impacts on the process of demyelination of CNS. 
Moreover, the viral infections are considered to be the 
main cause for the disease, while it was noted that several 
patients had genetically promoted MS [59].  
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Demyelination of axons results in the deficiency and 
complete absence of nerve impulse transmission due to 
the infiltration of leukocytes from vasculature to the 
neural tissue [59,60]. The migration of transendothelial 
lymphocyte in the CNS is contingent on activation of 
lymphocytes and capability of leukocytes to induce 
signaling responses in endothelial cells. These CNS 
endothelia are connected by tight junctions who form 
blood-brain barrier (BBB) [60]. The BBB plays a crucial 
role in the restriction transmigration of cells from 
peripheral blood to the CNS; hence, provides an immune 
system and homeostasis to the CNS. During the immune 
mediated multiple sclerosis the transmigration of antigen, 
the infiltration of inflammatory cells through the BBB and 
the neuronal damage are known to take place.  
 

Experimental Autoimmune 
Encephalomyelitis (EAE) 

In order to obtain a disease mechanism, several 
models have been established. Much comprehensive 
research on MS disease has been accomplished 
predominantly in animal model which is called 
experimental autoimmune encephalomyelitis (EAE). Since 
it is one of the best studied models for human immune 
mediated disease, EAE animal models used as a potential 
treatment of MS. Disease in the EAE are induced by T cells. 
It starts from brain inflammation by crossing the 
leukocytes through endothelial cells, consequently 
migrating through blood-brain barrier (BBB) to the CNS. 
Within CNS, antigen-presenting cells (APCs) introduce 
MHC class II associated peptides which causes myelin-
specific T-cell reactivation. It initiates signaling cascade of 
secretion of chemokines that induces macrophages to the 
sites of T-cell activation. As a result, chemokines and 
cytokines are released that produce inflammation. This 
neuroinflammatory response leads to infiltration of 
leukocytes and demyelination of axons in CNS which is 
analogous to the pathology identified in MS. Due to this 
correlation, EAE is accepted as a model of MS [60].  

 
Nowadays several therapeutics are useable, however, 

even though they are very effective treatment of MS, they 
have serious side effects. Therefore, in order to overcome 
these complications lovastatins are introduced which are 
considered to be the most promising approach. Statins 
have multiple effects such as anti-inflammatory effects, 
antioxidant effects, immunomodulatory effects, plague 
stability, thrombus formation. These numerous lipid-
independent effects are known as “pleiotropic effects” of 
lovastatin. Lovastatins develop the immune function in 
EAE, as a result, immune response from Th1 to the 
protective Th2 is induced in EAE [59,7]. 

Anti-Inflammatory Effects of Lovastatin  

The anti-inflammatory effect of lovastatin specifically 
targets mitigation of leukocyte migration across BBB. 
There are two studies demonstrating that lovastatins 
reduce migration of intercellular adhesion molecule-1 
(ICAM-1; CD54) on CNS endothelium which does not 
allow interacting with T cell integrin αLβ2 (lymphocyte 
function-associated antigen) (LFA-1) [60,61]. Recent 
studies identified that ICAM-1 does not only act as 
adhesion molecule, but also promotes lymphocyte 
transendothelial migration. The efficient ICAM-1 signal 
transmission depends on functional Rho GTPase. Statins 
reduce Rho prenylation, hence antagonize leukocyte 
migration across endothelial cells [60,61]. 
 

Immunomodulatory effect of Lovastatin 

Combination Treatment of Lovastatin and 
Rolipram 

The immunomodulatory effects of lovastatin 
treatment are observed in co-administration therapies of 
lovastatin with other drugs. Several studies support that 
the combination of lovastatin with rolipram (RLP) can 
prevent the progression of MS by different mechanisms. 
The RLP is a phosphodiesterase-4 inhibitor which 
prevents the degradation of cyclic AMP (cAMP) and 
induces immunomodulation of myelin-reactive Th1 to 
Th2. Therefore, combination therapy promotes 
neurorepair of demyelinated axons in MS model [62-64]. 
Moreover, reduced doses of drugs in combination are 
more efficient in lowering CNS demyelination and 
promoting neurorepair. However, the explanation of such 
observations have not yet established. Early studies 
demonstrated that optimal dose of lovastatin and RLP 
was ≥2mg/kg for repression of inflammation in EAE [64]. 
However, recent researches determined that suboptimal 
doses (≥1mg/kg) of lovastatin and RLP are more efficient 
in reducing disease conditions [62]. Treatment with these 
drugs is conducted after demyelination symptoms 
appeared. As a result, leukocyte infiltration and some 
pathological changes were dramatically declined by drug 
combination therapy. Since CNS demyelination is 
associated with an increase of cellular infiltration, drug 
combination treatment reduces the loss of neuronal axons 
and degeneration of oligodendrocytes in EAE animal 
models. 

 
The mechanism of drug combination therapy of 

lovastatin and RLP is as follows. As it was mentioned 
before RLP prevents the degradation of cAMP which is 
very crucial step in therapy [65]. Activation starts from 
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specific pathways including nuclear-cytoplasmic CREB-
protein (cAMP responsive element binding protein) 
which initiates gene transcription with cAMP in the 
promoter region. cAMP induces the phosphorylation and 
activates CREB protein. Consequently, it promotes the 
activation of protein kinase cascade in neurons, PKA [66]. 
As a result, elevated level of cAMP regulates by decreasing 
the demyelination of axons in CNS. This can be achieved 
by combination of lovastatin and RLP therapy. In addition, 
it was verified that PKA activity was relatively lower 
when lovastatin or RPL was applied separately rather 
than in combination [67]. 

 
Another effect of combination therapy of lovastatin 

and RLP is neurorepair in CNS. Induction of platelet 
derived growth factor-α receptor (PDGF-αR) and marker 
of myelin-forming oligodendrocyte (MBP) initiates myelin 
repair in the drug combination treatment. Moreover, 
oligodendrocytes transcription factors also increased due 
to the combination therapy which led to myelin repair. 
Transcripts for neurotrophins such as ciliary 
neurotrophic factor (CNTF) and NT-3 which are essential 
in myelin repair also were increased by drug combination 
therapy [68,69]. To sum up, combinatorial therapy of 
lovastatin and RLP seems to protect neuronal axons from 
demyelination and induce a spontaneous myelin repair by 
increasing the development of oligodendrocytes. 

 
Since the combination therapy of lovastatin and RLP 

has synergistic effects, acts with different mechanisms, 
has no additional toxicities and severe side effects, it is 
more promising tool for preventing MS development. In 
addition, lovastatin and RLP both are able to cross the 
BBB and induce neurorepair of CNS. On the basis of these 
findings, the combination of lovastatin and RLP is likely to 
be an excellent approach for MS prevention, by using 
suboptimal doses of drugs. 
 

Combination Treatment of Lovastatin and 
AICAR 

Another promising approach is a combination therapy 
of lovastatin and 5- aminoimidazole-4-carboxamide-1-
beta-D-ribofuranoside (AICAR), an immunomodulating 
agent that activates AMP-activated protein kinase. It 
affects with the same mechanism as the combination of 
lovastatin and RLP but with difference in their doses, RLP 
(≥1 mg/kg) whereas AICAR (≥50 mg/kg) [62]. Suboptimal 
doses of drugs in combination of lovastatin and AICAR 
decline leukocyte infiltration and proinflammatory 
immune response but it induces the anti-inflammatory 
immune response. Treatment with AICAR promotes the 
immune response from myelin-reactive T-cells to Th2 

differentiation and develops immunomodulatory effect in 
APC by activating secretion of anti-inflammatory 
cytokines. As a result, it increases the survival of neurons 
and develops neuroprotective ability against CNS 
demyelination. Since the combination of lovastatin and 
AICAR results in progress of protective Th2 immune 
response, it is concluded that this combination could be 
one of the approaches for the treatment of CNS 
inflammation and neurodegeneration in MS. By 
summarizing all arguments which were mentioned above, 
it can be concluded that lovastatin in combination with 
RLP and AICAR are known to be promising and efficient 
approaches for the treatment of MS introducing minimal 
adverse and toxic effects. Moreover, other studies suggest 
that lovastatin can be used as a therapy for other 
neurological disorders such as Alzheimer’s disease, Early 
Stage Parkinson's Disease and other peripheral nerve 
injuries that works with the same mechanism which was 
discussed above [69-74]. Therefore, for the future 
perspectives it is necessary to conduct clinical trials to 
investigate the effects of these combination therapies in 
other neurodegenerative abnormalities.  
 

Conclusion 

After analyzing the most recent research papers, it 
was concluded that lovastatin is one of the most 
perspective treatments of both CVDs and MS. Additionally, 
more studies in vitro and in vivo are required to fully 
evaluate the effectiveness of lovastatin in different 
diseases.  
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