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Abstract 

Advances in sequencing technologies have facilitated multitudinal research analysis. Ample number of genes, 

transcriptional factors, gene families and genes associated to agronomical traits has been discovered. Similarly, several 

noncoding RNA (ncRNA) transcripts have also been identified which are researchers interest these days. RNA molecules 

that are not translated to a protein molecule are marked as ncRNA. They are categorized based on their size to small and 

long non-coding RNAs (lncRNA). Several ncRNAs have been identified in plants and animals, however many among them 

are yet to be characterized or proven with any biological roles. In this review we discuss the advancement of ncRNA 

research in plants and focus in their identification, types and characterization with the available resources. 
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Introduction 

RNA molecule that is not translated into a protein 
molecule is termed as ncRNAs. They are known to 
regulate genes while playing major roles in plant growth 
and stress tolerance [1,2]. NcRNAs are categorized into 
two groups based on their size into small and long non-
coding RNAs; where microRNAs (miRNA), small 
interfering RNAs (siRNAs), form the first group with < 50 
nucleotide (nt) length and long noncoding RNAs like long 
intergenic RNAs (lincRNAs), circular RNAs (circRNAs) 
forming the second group of regulatory ncRNAs with a 
length > 200nt [3]. Among the different classes of ncRNAs 
miRNAs and lncRNAs are researchers interest these days. 
MiRNAs are the widely known small ncRNA with 18–24 
nucleotides (nt) length abundantly found in plants and 
animals. They are transcribed as pri-miRNAs in the 
nucleus by RNA polymerase II, processed by Dicer-like 1 

into pre-miRNAs forming a hairpin structure. Later they 
are loaded into the Argonaute (AGO) protein complex to 
execute their functions [3]. MiRNAs regulate gene 
expression by complementary binding to specific mRNAs 
and function through post transcriptional gene silencing 
[3,4]. Subsequently, lncRNAs are potential biological 
regulators that have originated as the reason of 
transposable element insertions, chromosomal 
rearrangement or as a cause of mutations in coding genes 
[5]. A large number of ncRNAs have been identified and 
characterized in plants such as Arabidopsis thaliana (A. 
thaliana), Zea mays (Z. mays) and Medicago truncatura (M. 
trunculata) [5-7]. The availability of sequence information 
as expressed sequence tags (ESTs), complementary DNA 
(cDNA), microarray, whole genome sequence (WGS), and 
RNA sequencing (RNA seq) have enabled the 
identification of both the ncRNAs. Besides these, the 
advancement in sequencing technologies has provided a 
paradigm in ncRNA research. 
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Identification and Characterization of 
ncRNAs in Plants 

Cloning the small RNA and comparative were the 
initial methods followed in identification of miRNAs. In 
2002 Reinhart BJ, et al., used these techniques to identify 
16 Arabidopsis thaliana (A. thaliana) miRNAs showing 
different expression pattern during different 
developmental stages. This method was overcome by 
their identification of miRNAs from ESTs in plants like A. 
thaliana, O. sativa, B. rapa [8-10]. The advent of NGS 
technologies like small RNA sequencing has been the 
widely used method recently for the identification of 
miRNAs. These methods have enabled several genome 
wide identifications which enriched our knowledge with 
growing number ncRNAs publicly available. Also, 
bioinformatics methods have enabled the target 
prediction for these miRNAs. The identified miRNAs are 
evidenced to involved in many developmental process, 
biotic and abiotic stress responses [11,12]. Several 
miRNAs have been proven to involve in floral 
development, leaf formation, stem development, root 
development, signal transduction, male and female 
reproductive development, and many other cellular 
processes in several plants [13-21].  

 
Similarly, a large number of lncRNA have been 

identified and characterized in plants utilizing cDNA 
sequences, RNA sequencing and strand specific RNA 
sequencing technologies [6,22-24]. Besides their 
regulatory roles few lncRNAs are known to play roles in 
phosphate-starvation, nodulation and cold stress [25]. 
Although several lncRNAs have been identified, most of 
their functions yet remain unknown. A very small number 
of plant lncRNAs have been characterized thus far. The 
most well-known lncRNAs COOLAIR and COLDAIR 
identified in Arabidopsis relate to the flowering locus 
(FLC) and function during flowering time [26,27]. 
LncRNAs, GmRNAD40 and MtENOD40 identified in 
soybean and Arabidopsis mediate nodule formation 
[28,29]. Other lncRNAs functioning in phosphate uptake 
have also been reported in tomato, rice and barley 
[25,30,31]. In plants like maize more than 90% of 
lncRNAs are known to function as precursors of small 
RNAs [7]. 
 

Experimental Validation 

Besides genome wide identification, validation of 
these miRNAs and lncRNAs using experimental 
procedures are also in the increasing phase. MiRNAs are 
generally validated using RT-QPCR (real time methods), 
however for few miRNAs their stem loop structure makes 

it difficult in their identification. Hence several array-
based methods and northern blot techniques have 
become the major techniques used in the miRNA 
validation [32]. The next step after the miRNA validation 
is the target validation which helps major to understand 
the impact of the miRNA on the gene of interest. Rapid 
Amplification of cDNA ends (RACE) techniques and RLM-
RACE are the widely used techniques for the target 
validation on small scale [33]. Degradome sequencing is 
an emerging technique for the miRNA-target validation on 
genome wide basis, however RLM-RACE (RNA Ligase 
Mediated RACE) is the most widely accepted validation 
method for the miRNA mediated cleavage. Similarly, 
lncRNA are generally validated using RT-PCR methods. 
 

Recent Trend in ncRNA Identification 

NcRNA identification keeps evolving with the 
advancing technologies. Recently miRNA sequencing 
(miRNA seq) and lncRNA sequencing (lncRNA seq) are 
the techniques designed to focus on the ncRNAs of 
interest only. Such studies have identified several new 
miRNAs and lncRNAs that have not been identified earlier 
[34]. However, these methods seem highly expensive 
techniques, RNA seq experiments have been the most 
widely used and cost-effective method in the 
identification of these ncRNAs. 
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