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Introduction

In contrast to the classical paradigm “one sequence - 
one structure - one function” that a given protein sequence 
corresponds to a well-defined three-dimensional (3D) 
structure and an associated function, it was discovered 
in the 1990s that an increasing number of proteins can be 
functional in the absence of a stable 3D-structure [1]. This 
new concept, the “disorder-function paradigm”, assumes that 
an intrinsically flexible protein may have several structures 
and consequently various functions. Several terms were 
used to name these proteins: e.g. intrinsically disordered 
proteins (IDPs), natively unfolded proteins (NUPs), natively 
denatured proteins (NDPs) or intrinsically unstructured 
proteins (IUPs). Whereas some IDPs are predicted to be 
fully disordered, most of them are also known to have both 
structured domains and disordered regions. 

Their native state is characterised as a dynamic 
ensemble of interconverting conformations under 
physiological conditions. The free energy landscape of IDPs 
can be described as a hilly plateau with numerous local 
energy minima, which is radically different from what is 
observed for ordered globular proteins, i.e. a well-defined 
global energy minimum [2]. This conformational plasticity 
is associated with specific sequence features including a 
low proportion of bulky hydrophobic amino acids and a 
high content of charged and hydrophilic residues [3-4]. 
Indeed, the combination of low mean hydrophobicity and 
high net charge is an important prerequisite for the absence 

of compact structure in a protein [5]. Depending on the 
environmental conditions and their binding partner, IDPs 
may exist in at least four conformations, the so-called protein 
quartet model: folded (ordered), molten globule, pre-molten 
globule, and random coil [6].

Disorder in proteins is highly prevalent in many 
organisms [7,8]. Indeed, more than one third of the eukaryotic 
proteins contain intrinsically disordered regions (IDRs) 
whereas for humans it is up to the half. Despite a lack of stable 
3D-structure, IDPs play key roles in cellular processes, such 
as i) regulation of transcription, translation and cell cycle, 
ii) molecular recognition, and iii) chromatin organisation. 
Their functions usually operate by the binding of multiple 
protein partners [9]. Hence, most of IDPs are serving as hubs 
in protein-protein interactions (PPIs) networks [10,11]. 
IDPs are also regulated by extensive posttranslational 
modifications (PTMs), such as phosphorylation, acetylation 
and methylation, that affect their abundance, cellular 
distribution, fold ability and functions [12,13]. 

IDPs are overrepresented amongst proteins implicated in 
disease [14-16]. More than 79% of human cancer-associated 
proteins [17] and 57% of the identified cardiovascular 
disease-associated proteins [18] are predicted to contain 
intrinsically disordered regions. As they tend to misfold and 
aggregate under certain conditions, IDPs are associated with 
neurodegenerative disorders [19,20] such as Alzheimer’s or 
Parkinson’s diseases. Whilst IDPs are essential therapeutic 
targets [21], only a small number of molecules and peptides 
are able to inhibit their functions. Often, the conventional 
structure-based drug design strategies applicable to 
ordered proteins are not appropriate for IDPs, due to their 
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highly dynamic nature. Developing drugs targeting IDPs is 
therefore challenging. Currently, the most studied IDPs are: 
i) the nuclear protein NUPR1 [22] involved in pancreatic 
adenocarcinoma; ii) the transcription factor p53 [23] playing 
a role in cell cycle regulation, apoptosis and DNA repair; iii) 
the α-synuclein protein [24] that enters in the so-called 
synucleinopathies, a group of neurodegenerative disorders; 
iv) the transcription factor and oncoprotein c-Myc [25] 
which is involved in a broad range of human cancers. 

IDPs as Druggable Targets

Currently, four drug design strategies are implemented 
to target IDPs and disrupt their biological functions [26-30]. 
The first one consists in developing small molecules that bind 
to the IDP ordered domains, causing the disordered region to 
become ordered. It is called an allosteric inhibition [29].

 
In the second approach, drugs are able to mimic the 

ordered (or disordered) binding partner of the IDP preventing 
its binding and consequently the associated PPIs. Several 
small molecules have already shown abilities to inhibit the 
disordered interface of PPIs based on the disordered regions 
[7]. For instance, by using the molecular recognition features 
(MoRFs) method [31], the p53-Mdm2 interactions [28] can 
be targeted by peptides or small molecules [26].

 
The third strategy is more challenging and considers 

blocking IDPs’ disordered regions by stabilising 
the functionally misfolded structure. It allows for a 
conformational transition from a disordered to an ordered 
structure. That is, the ligand has to directly block all the IDP 
disordered states. Few rational drug design methods have 
been proposed in this context. A computational approach 
has recently been described to virtually screen compounds 
that can simultaneously bind to different conformations of 
the oncoprotein c-Myc. The latter contains a disordered basic 
helix-loop-helix-leucine zipper domain that adopts a helical 
conformation upon binding to Myc-associated factor X (Max) 
[27]. Furthermore, a methodology based on the synergy of 
biophysical, computational and biological methods have 
been set up to identify a drug against NUPR1 [32].

A fourth method is to prevent aggregation of IDPs, 
which form toxic amyloid oligomers or fibrils [30]. Several 
small molecules have been reported to interfere with the 
aggregation process of the Aβ peptide, an IDP associated with 
Alzheimer’s disease [33], or the α-synuclein [34] involved in 
Parkinson’s pathology. 

Biophysical Characterisation of IDPs

In order to understand the IDPs functional mechanism 
and promote novel strategies for drug discovery, it is 

essential to first investigate their structural characteristics 
and their specific interactions with binding partners in their 
PPIs network. In this context, combining biophysical and 
computational methods turned out to be the most relevant 
strategy. Indeed, a serious bottleneck for this type of analyses 
is that no single method can provide access to the inherent 
flexibility and structural variability of IDPs; traditional 
structural biology method such as X-ray crystallography is 
not adapted. 

Alternative techniques such as nuclear magnetic 
resonance (NMR), small-angle X-ray scattering (SAXS), 
circular dichroism (CD) or single-molecule fluorescence 
(particularly, the Förster resonance energy transfer method) 
can be used to attempt IDPs structural characterisation [35]. 
NMR provides local and long-range structural information 
while SAXS measures protein compactness and shape. 
Residual secondary structures and IDRs are revealed by 
CD, and fluorescence gives information about the structural 
heterogeneity and the intermediate structures. 

Guided by experimental data, computational methods 
[36] may also help interpreting the results at the atomic scale 
and giving information about individual conformations in 
the ensemble. Molecular dynamics-based methods [37] are 
the most used, showing the atomic fluctuations of IDPs as a 
function of time. However, they still suffer some weaknesses 
such as the selection of an appropriate force-field or the 
need to generate uncorrelated atomistic microstructures. 
Several strategies are proposed to overcome these problems 
and produce a correct description of the IDP conformational 
ensemble [38,39].

Perspective

IDPs constitute a unique class of proteins with crucial 
biological functions. In recent years, multiple studies 
have highlighted their intrinsic properties and binding 
mechanisms. However, more efforts are still needed to fully 
understand these fuzzy systems and particularly the PPIs in 
which they are involved. Such insights are precious for the 
rational design of therapy targeting IDPs, which are present 
in human diseases. 
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