
Annals of Advanced Biomedical Sciences 
ISSN: 2641-9459MEDWIN PUBLISHERS

Committed to Create Value for Researchers

Smartphone and Smartwatch for Human Activity Recognition Ann Adv Biomed Sci 

Smartphone and Smartwatch for Human Activity Recognition

Esra’a Alshawwa, Mousa Al Zanina, Mohammed Ibbini and Mashhour M 
Bani Amer*
Department of Biomedical Engineering, Jordan University of Science and Technology, Jordan 

*Corresponding author: Mashhour M Bani Amer, Department of Biomedical Engineering, 
Jordan University of Science and Technology, Irbid, Jordan, Email: mashamer@yahoo.com   

Research Article
Volume 4 Issue 1

Received Date: March 24, 2021

Published Date: May 04, 2021

DOI:  10.23880/aabsc-16000159 

Abstract 

Human activity recognition (HAR) systems are developed as aspect of a model to allow continual assessment of human 
behaviors in IoT environments in the areas of ambient assisted living, sports injury detection, elderly care, rehabilitation, and 
entertainment and close monitoring. Smartphones are already used to recognize activity. Most of the research done in this field 
placed a restriction on fixing the smartphone securely in a certain location on the human body, along with the machine learning 
system, to promote the process of classifying raw data from smartphone sensors to human activities. Smartwatches solve this 
limitation by placing them in a consistent position, which becomes steady and precisely sensitive to body movements. For this 
experiment, we evaluate both the accelerometer and the gyroscope sensor on the smartphone and the smartwatch, and decide 
which sensors hybrid does superiorly. Five daily physical human activities are evaluated using five classifiers from WEKA, in 
addition to Artificial Neural Network (ANN), K- Nearest Neighbor (KNN), and Support Vector Machine (SVM) algorithms built-
in MATLAB 2018a. We used confusion matrix and random simulation to compare the accuracy and efficiency of those models. 
The results showed that the accelerometer sensors combination has the highest accuracy among other combinations and 
achieved an overall accuracy of 97.7% using SVM that gives the best performance among all other classifiers. 

Keywords: Accelerometer; Gyroscope Sensor; Human Activity Recognition; KNN; ANN; SVM

Abbreviations: HAR: Human Activity Recognition; 
WEKA: Waikato Environment for Knowledge Analysis; 
ANN: Artificial Neural Network; KNN: K- Nearest Neighbor; 
SVM: Support Vector Machine; DCT: Discrete Cosine 
Transformation; PCA: Principal Component Analysis; SMA: 
Signal Magnitude Area; WISDM: Wireless Sensor Data 
Mining; MP: Multilayer Perceptron; RF: Random Forest; LR: 
Logistic Regression.

Introduction

Human Activity Recognition (HAR) is the challenge 
of recognizing a physical activity conducted within a 
given environment by an individual based on a trace of 
movement. HAR in an automated way is basic in many 
ambient intelligence applications such as smart homes [1], 

health monitoring [2,3], assistance applications, emergency 
services, and transportation assistance services [4]. It is 
predicted that smart environments, which communicate 
with the disabled or elderly according to their specific needs, 
will be a correlative fraction of everyday life in the short term. 
Given that the global rise in the older people ratio is firmly 
significant, the aging in place has been of extreme significance. 
The economic consequences of international senility can be 
mitigated by encouraging the overages to remain energetic 
and stable in their homes for long years, where living free 
is more normal and restful [5]. Unfortunately, increasing 
elderly population makes it infeasible for all homes of 
elderly people to assign a human caretaker, where the need 
to manage health by oneself in cooperation with healthcare 
professionals is unavoidable.
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The smartphone has recently become an integral 
part of human regular activities and is turning into an 
increasingly sophisticated system with rising processing 
capacity, network functionality and sensing abilities. Many 
as 25% of people used a smartphone in 2015, and held 
their phone wherever they went [6]. It also includes a large 
range of hardware sensors such as accelerometer, gyroscope, 
compasses, barometer, temperature, humidity, light sensor, 
and GPS receiver. Mobile health technology is the interchange 
of eHealth and mobile technology [7]. Smartphone sensors 
have turned into a data source to track different human 
behaviors, for example, physical activities such as running, 
walking, walking upstairs, and downstairs. The analysis of 
these behaviors can be used to monitor consumer safety 
and supply health care services on time. The key constraint 
imposed by the current systems is to firmly attach the 
smartphone to the human body in order to get the best 
performance from the raw data of the smartphone sensors. 
In reality, this is not a practical solution, because the user 
often needs to serve for calling, using the internet, social 
media, etc. on the mobile, which means keeping the device 
in various places and then being subjected to dramatic 
movements. This technique involves the readings controlled 
by inertial sensors on the device, which could then display 
incorrect results. Smartwatches that are worn in a consistent 
location [8], tackle this restriction.

The key technological justification for using the 
smartwatch is to hold the smartwatch sensors (accelerometer 
and gyroscope coordinates) in a location that is stable and 
critical to movements of the human body. In other words, 
the aforementioned smartwatch sensors can fit out more 
generalized and distinct features to be utilized for outcomes 
that are more reliable in the system of recognition of human 
activity.

Advances in machine and deep learning techniques for 
selecting features besides the addition of a variety of sensors 
will move the limits of recognition of human behavior to 
deeper epistemological levels. This project tackles the above 
challenges by collecting and preprocessing available to the 
public benchmark data, after which we use machine learning 
and deep learning to predict and accurately and efficiently 
recognize daily life activities. Our project describes the activity 
recognition task and the procedure for performing this task 
using different machine learning algorithms including WEKA 
data mining, artificial neural network (ANN), K-nearest 
neighbor (KNN), and support vector machine (SVM), where 
we consider five activities: walking, jogging, stairs (ascending 
and descending), sitting, and standing.

The remainder of the article is constructed as follows. 
Section II introduces a literature review of human activity 
recognition. The methodology proposed for the built 

framework is outlined in Section III, the outcomes of the 
experiments are given in Section IV, and Section V sums up 
our conclusion and explores scopes of future research.

Literature Review

With ever greater computing capabilities, flexible 
Internet connections and various mobile apps, smartphones 
have become an integral part of our daily lives, as described 
above. Furthermore, even cheaper smartphones have a 
variety of sensors (accelerometer, GPS, and gyroscope, 
etc.) that allow human activities to be detected using a 
smartphone. Oscar Lara and Miguel [9] Lobrador introduce 
the Waikato Environment for Knowledge Analysis (WEKA), 
which is definitely the most well recognized resource within 
the research community of machine learning. This provides 
enforcements of many learning algorithms and enables them 
to be readily tested for a dataset using, among others, cross-
validation and random break. Therefore, it helps in solving 
HAR.

Most articles use extractions of features different from 
what we have employed in this project. Zhenyu and Lianwen 
[10] describe a high-precision HAR method that uses discrete 
cosine transformation (DCT), Principal Component Analysis 
(PCA), and Support Vector Machine (SVM) to distinguish 
various individual activities. Vollmer C, et al. [11] have 
used Shift-invariant Sparse Coding Algorithm for activity 
recognition. SVM algorithm was implemented by Cho J, et al. 
[12] to identify walking, moving up stairs, moving down stairs, 
running, and motionless. The characteristics picked from the 
measuring system data were standard deviation of Y-axis, 
Y-axis correlation, Z-axis correlation, Y-axis autoregressive 
fitting and signal magnitude area (SMA). Additionally, the 
mean, standard deviation, and pitch skew were chosen 
for classification. Boyle, et al. [13] suggested a gait-based 
method for the identification of walking behaviors. The 
wavelet transformation was used to obtain characteristics 
from raw data, and the classification was carried out using 
the K-Nearest Neighbors (KNN) algorithm. WEKA data 
mining was also used to identify and classify HAR using some 
of the classifier algorithms (such as Bayes, Functions, Lazy, 
Meta, Mi, Misc, Rules, and Trees) [14]. Some datasets were 
generated by researchers, submitted, and used by others 
across the world. WISDM (Wireless Sensor Data Mining) 
is a Fordham University published dataset, which includes 
data gathered under controlled and laboratory conditions 
[15]. Only the accelerometer installed in the mobile phone is 
used to collect data. The sampling rate is 20Hz and the total 
instance count is 1,098,207. There are six features (user 
index, type of activity, time stamp, x, y and z-accelerations). 
The collection task involves twenty-nine subjects. Six tasks 
are classified (walking (38.6%), jogging (31.2%), upstairs 
(11.2%), downstairs (9.1%), sitting (5.5%), and standing 
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(4.4%)). Time-domain characteristics are elicited from 
the raw time series data in the publisher’s research, such 
as the average value, standard deviation, average absolute 
difference, average resulting acceleration, peak time, and 
binned distribution. In a comparative study Maguire and 
Frisby [16] used Weka Toolkit for behavior detection to 
compare the output between KNN and J48 / C4.5. We also 
found that KNN achieves greater overall performance by 
using 10-fold cross-validation in various experiment settings.

Recently, several studies have suggested knowledge 
incorporation strategies that integrate various sensor styles 
or algorithms to enhance validity, reliability, draw trust 
measures between different algorithms, and minimize the 
complication of the recognition system to tackle the obstacles 
connected to individual sensor approaches and boost the 
generalization [17].

Smartwatches have become more widespread in the 
market-place and this trend is expected to continue as 
the technology develops. A survey found that over 80% of 
smartwatch users said safe living and access to medical 
services are major advantages of wearable technology [18]. 
There are several HAR studies in the literature that concentrate 
on smartphones, and more lately on smartwatches [19-
21]. Smartwatches offer the set of motion data with a more 
reliable user, since it is often securely placed to the user (i.e. 
it is worn on either left or right hand) regardless of their 
choice of clothing. Consequently, smartwatches give the 
option to accurately and reliably acquire motion data from 
the user as smartphones might do. Bhattacharya S [20] has 
explored the smartwatch-centric recognition of movement 
and the potential of incorporating deep learning in wearable 
devices. It was indicated that smartwatch facilitated by GPU 
could provide profound implementation of the learning. The 
system executed on wristwatch accomplished high reliability 
for typical day-to-day operation such as hand movement, 
inner/outer location, and public-dataset conveyance pattern.

In modern methods of acknowledgment of human 
activities for smartphone and worn sensors, attribute 
representation techniques employ carefully designed 
extraction and selection processes that are extracted 
properly employing specialists domain expertise. These 
extracting features approaches, however, are based on task 
or application, and cannot be transferred to similar pattern 
behavior. In addition, carefully designed vector features are 
difficult to analyze complicated operation data and require 
time-consuming extraction of features [22,23]. Many ways 
like multimodal integration and decision mixing are used to 
achieve diversity and flexible functionality for performance 
generalization of human activity recognition across diverse 
domains. Nevertheless, issues surrounding the perfect fusion 
techniques still remain and that affect achieving higher 

generalization with reduced computing time for smartphone 
and wearable sensor integration.

Studies have provided insight into techniques, which 
require automatic extraction of attributes with minimal 
human potential using deep learning techniques to solve 
the above problems [24]. This technique is a novel path 
of machine learning, which constitutes high-level data 
attributes. It has been a significant stream in recognition 
of human activity. It involves several layers of neural 
networks, which hierarchically reflect features from inferior 
to superior. It has become a vital work domain in image 
and object recognition, the processing of modest speech, 
computer interpretation and circumferential surveillance 
[25]. More recently, different methods of deep learning have 
been suggested for the identification of human behavior 
based on smartphone and wearable sensors. Such deep 
learning techniques can be piled into various layers to 
create deep learning templates that deliver improved system 
execution, resilience, strength and eliminate the necessity 
to rely on standard handmade attributes. Deep learning 
for analysis of time series has recently been examined 
[26,27]; another highly associated field in the recognition 
of human behavior. Nevertheless, the author picked a wider 
perspective of time series usage of deep learning that include 
words understanding, classification of the sleep period, and 
detection of anomalies. On the other hand, this review [28] 
concentrated on recognition of human activity depending on 
deep learning algorithms using mobile or worn sensor data, 
describing the mechanisms for promoting deep learning-
based recognition of human activity and providing a detailed 
overview on the approaches, implementation method, and 
attribute teaching methods.

The Activity Recognition Task

This section illustrates how the classification process 
was done. Figure 1 shows the fundamental framework of 
human activity recognition process.

Figure 1: Basic Structure of human activity recognition 
process.
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Data Collection

The dataset employed in this project is the” WISDM 
Smartphone and Smartwatch Activity and Biometrics 
Dataset” found in UCI machine learning repository website 
[29]. It consists of data collected from 51 healthy subjects, 
and each one performed 18 tasks for 3 minutes each. Each 
one had smartwatch worn on his dominant hand, and a 
smartphone in his pocket. The collected sensor data was from 
the accelerometer and the gyroscope on the smartphone and 
the smartwatch, yielding four total sensors. The smartphone 
was Google Nexus 5/5X or Samsung Galaxy S5 and the 
smartwatch was the LGG Watch.

Raw Time-Series Sensor Data

The raw time-series sensor data was collected by 
the accelerometer and gyroscope on the smartphone and 
smartwatch at a rate of 20Hz (i.e., every 50ms). So, there are 
four sensors abbreviated as watch-gyro, watch-accel, phone-
gyro, and phone-accel, as shown in figure 2.

Figure 2: Raw data types generated from sensors.

Within each sensor subdirectory, there is a file for each 
subject, so there are 51 files in each of the four subdirectories. 
The files were named as follows:

•	 data_1600_accel_phone.txt
•	 data_1634 _ gyro_watch.txt

The first component is fixed and is always “data”. The 
second part is for the subject number and ranges between 
1600 to 1650. The third component is either” accel” or” gyro” 
to describe the sensor type, and the fourth component is” 
phone” or” watch” to define the device on which the sensor 
belongs.

Transformed Activity Examples and Generated 
Features

The raw data was split into 10-second non-overlapping 
segments for each sensor (per subject and per activity) 
and then high-level features are created based on the 200 
(10s*20 readings/s) readings stored within each segment. 

A 10-second window has been conducted in order to gain 
sufficient time to capture multiple repetitions of those 
activities regarding repetitive movements, and is small 
enough to provide rapid response [15]. The examples 
included in this data set have 93 features but only 43 most 
informative features were chosen, which are variant of six 
basic features [30]:

•	 Binned Distribution [30]: For each axis, the range of 
values in the 10s window (max-min value) is located, 
this range is divided into 10 equal-sized bins, and then 
the fraction of values is recorded in each bin (per axis).

•	 Average [3]: Average sensor value (each axis).
•	 Time between Peaks [3]: Time in milliseconds between 

the peaks in the wave associated with most activities. 
Heuristically determined (per axis).

•	 Average Absolute Difference [3]: Average absolute 
difference between the each of 200 readings and the 
mean of those readings (per axis).

•	 Standard Deviation [3]: Standard deviation (per axis).
•	 Average Resultant Acceleration [1]: Resultant is 

computed by squaring each matching x, y, and z value, 
summing them, taking the square root, and then 
averaging these values over the 200 readings.

Data Preprocessing

Only five activities from the eighteen activities were 
selected in each file, which are: walking, jogging, stairs 
(ascending and descending), sitting, and standing. Such tasks 
were chosen because many people practice them frequently 
in their everyday routines. At first, data were imported into 
MATLAB 2018a to read each file in each sensor subdirectory. 
The formatting information was then removed from the start 
of each file, and the remaining 13 unnecessary activities 
were deleted. After that, readings from the 51 subjects were 
collected and put in one file for each sensor, separately. After 
one file for each sensor was generated, they were integrated 
to provide the five combinations of the four sensors, which 
are:

1) Phone: Phone acceleration+phone gyroscope (PA+PG).
2) Watch: Watch acceleration+watch gyroscope (WA+WG).
3) Accl: Phone acceleration+watch accelerometer (PA+WA).
4) Gyros: Phone gyroscope+watch gyroscope (PG+WG).
5) All: Phone acceleration+phone gyroscope+watch 

acceleration+watch gyroscope (PA+PG+WA+WG).

The merging process of different files, for example, Phone 
acceleration and phone gyroscope, started with merging 
each one of the five activities in the first file for each subject 
with the corresponding activity and subject in the second 
file. In case the number of samples in each file is different, 
the minimum number of the two was chosen to avoid having 

https://medwinpublishers.com/AABSc


Annals of Advanced Biomedical Sciences 5

Mashhour M Bani Amer, et al. Smartphone and Smartwatch for Human Activity 
Recognition. Ann Adv Biomed Sci 2021, 4(1): 000159. 

Copyright©  Mashhour M Bani Amer, et al.

missing values in the merged file. After that, the columns of 
the unwanted features and the column of the subject number 
in the single and merged data files are removed, and each 

file is saved in CSV file to be read by WEKA. The number of 
instances produced for each class forming the dataset used 
for the training and testing is shown in table 1.

Used Sensors Walk Jog Stairs Sit Stand Total
PA 1271 1314 1180 1263 1283 6311
PG 1260 1311 1194 1153 1323 6241
WA 1011 993 997 1028 1046 5075
WG 915 902 865 939 934 4555

PA+PG 931 963 942 979 965 4780
WA+WG 915 901 864 938 933 4551
PA+WA 882 867 1074 1171 1188 5182
PG+WG 863 868 850 460 1349 4390

PA+PG+ PA+PG 863 867 858 904 886 4378
Sum 8911 8986 8824 8835 9907 45463

% 19.6 19.8 19.4 19.4 21.8 100

Table 1: Number of Instances per used Sensors and Activity.

Evaluation Methods

WEKA Data Mining Method

Once the dataset was ready, the WEKA data-mining 
suite [31] utilized five classification techniques to trigger 
user activity prediction models: Multilayer Perceptron 
(MP), Decision Tree (J48), Random Forest (RF), k-Nearest 
Neighbors (KNN), Logistic Regression (LR). In addition, 
ZeroR classifier was used for baseline performance that acts 
as a point of reference and predicts the class value that has 
the most observations in the training dataset. In each case, 
the default settings and 70% split were used, where the data 
is divided randomly into 70% training data, and 30% testing 
data.

ANN-Multilayer Perceptron Algorithm

ANN model is a feed-forward artificial neural network 
model that consists of input, output, and multiple hidden 
layers made of several units called neurons that transform 
the input into something that the output layer can use. These 
hidden layers of multilayer network will extract a different 
set of high-level features until it can recognize what is looking 
for. At first, each data file was split into 30% testing data and 
70% training data. The Sigmoid function was used for the 
hidden layers as an activation function, and for the output 
layer as a linear function. To specify the size of neurons in 
each layer, the procedure has been started with one layer and 
increased the number of neurons gradually until the accuracy 
started to decrease or it does not show any change, so the 
value of neurons was fixed. Then, the process was repeated 

for the second layer to know the number of neurons used 
in it. After that, another layer was added but the accuracy 
started to decrease, therefore it was eliminated, so the model 
had two layers where the first layer had 20 neurons and the 
second layer had 10 neurons, as shown in figure 3.

Figure 3: System of two hidden layers of the suggested 
ANN-based activity recognition classification model.

K-Nearest Neighbor Algorithm

KNN is a major technique that can be used for recurring 
activities as simple as that. KNN is a tool of classification 
which acts as a form of direct classification, as it does not 
embrace a learning approach. KNN classifies an unknown 
object based on the value of k by counting the number 
of its nearest neighbors. The KNN algorithm operates on 
the concept of resemblance (distance) among the training 
dataset and the classification of a new instance. The distance 
of a measurement neighbor is determined using a location 
information of similarity function, such as the distance from 
Euclidean function. The unknown instance shall be classified 
as the most common class among its k nearest neighbors. At 
first, data was split as in the previous section to 70% training 
data and 30% testing data, and then KNN algorithm was built 
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to classify a new observation from testing data. The value of 
the k was one.

Support Vector Machine Algorithm

Support vector machine is by many a simple and highly 
favored algorithm, as it produces large accuracy with less 
computing power. The support vector machine algorithm’s 
objective is to locate a hyperplane in an N-dimensional space 
(N- the number of features) that separately identifies the 
relevant data. Data was first split into training and testing 
data, 70% of the data was used for training and the rest 30% 
was used for testing. Then, the SVM model was built. Since 
SVM is a binary algorithm, one of the strategies has been used 
to reduce the multiclass classification problem to multiple 
binary classification problem, which is one vs all strategy. 
This technique includes learning a single classifier per class, 
with the class instances being positive instances and the 
remainder instances being negative. This layout allows the 
ground classifiers to generate a real-valued trust result for its 

decision, instead of only a class label. Bayesian Optimization 
was used to optimize the SVM classification using the fitcsvm 
function and Optimize Hyper parameters name-value pair.

Results and Discussion

WEKA Models Evaluation

The extracted outcomes for our experiments are shown 
in Table 2. This table provides the accuracy level of all the 
activities in each data type, for each of the specified learning 
classifiers. Table 2 confirms that high level of accuracies can 
be obtained in many states. For merged data of smartphone 
and smartwatch accelerometers and merged data from all 
sensors, we generally achieve accuracies above 97%. The 
phone can perform well on its own and give good efficiency, 
while using the watch separately provides much lower 
achievement in all used classifiers. For activity recognition, 
the gyroscope sensors harmonically do even worse than the 
accelerometer sensors.

Used Sensors MP J48 RF KNN LR ZeroR
PA 93.9 92.6 95.6 95.1 87.6 19.0
PG 74.4 78.3 85.8 78.3 68.8 19.5
WA 91.0 87.7 93.2 89.8 88.2 19.4
WG 79.1 76.7 82.1 76.1 75.2 20.1

PA+PG 95.3 90.5 96.0 96.0 89.7 18.5
WA+WG 91.9 88.8 93.5 92.2 88.8 18.6
PA+WA 97.4 94.1 97.6 97.3 93.6 22.8
PG+WG 83.0 88.2 91.7 88.3 86.5 30.8

PA+PG+ PA+PG 92.5 92.6 95.8 97.4 94.5 20.4

Table 2: Overall Accuracies of Weka Classifiers for Activity Recognition using 43 Features.

Table 3 provides the results and confusion matrix for 
merged data of smartphone and smartwatch accelerometers 
using Random forest classifier only since it has the highest 
accuracy. On the other hand, the most incorrect classification 
occurs when the classifier predicts stairs, where 12 of 285 

walking activity are misclassified as stairs and 1 of 260 
jogging activity is misclassified as stairs. Moreover, 7 of 342 
sitting activities are misclassified as stairs, and 2 of 254 
standing activity are misclassified as stairs. That indicates it 
is the hardest activity to be recognized.

Random Forest
Predictive Activity

Walk Jog Stairs Sit Stand

Actual Activity

Walk 273 0 12 0 0
Jog 1 257 1 1 0

Stairs 5 2 307 0 0
Sit 0 0 7 331 4

Stand 0 0 2 2 350
Accuracy% 95.8 98.8 97.8 96.8 98.9
Precision% 97.8 99.2 93.3 99.1 98.9

Table 3: Activity Recognition Accuracy and Confusion Matrix for Merged Accelerometers using Random Forest Classifier.
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ANN, KNN and SVM Models Evaluation

In this part, an analysis of the implementation of ANN, 
KNN, and SVM classifiers models in terms of accuracy and 
precision is introduced. Table 4 illustrates the performance 
of the three algorithms using nine different sensor 
combinations data.

ANN algorithm was built using MATLAB and incorporated 
a tuning of hyper parameters where the number of layers and 
number of neurons were adjusted. The retained performance 
is good as in previous WEKA results. To understand the 

effect of varying combinations of these motion sensors, 
the recognition accuracy for ANN algorithm was evaluated 
with single and combined sensors data, as shown in Table 
4. As expected, we obtained the best accuracy when both 
accelerometer sensors of smartphone and smartwatch were 
used together, achieving approximately 96.6% classification 
accuracy. When phone accelerometer accuracy compared 
to all sensors accuracy, both have similar accuracies. This 
indicates that phone accelerometer has good performance 
compared with other sensors. In addition, phone sensors 
show better performance compared to watch sensors.

Used Sensors ANN Accuracy % KNN Accuracy % SVM Accuracy %
PA 94.0 89.7 95.6
PG 80.5 69.0 93.5
WA 91.5 88.7 92.5
WG 82.1 71.5 81.6

PA+PG 95.1 88.1 96.4
WA+WG 92.3 85.5 94.1
PA+WA 96.6 95.1 97.7
PG+WG 85.6 69.6 90.7

PA+PG+
PA+PG 93.8 93.8 97.7

Table 4: Overall Classification Accuracy for Different Sensors Data using Three Algorithms, Individually.

KNN algorithm was applied to analyze different sensors 
data that was got from smartphone and smartwatch sensors. 
A k value of 1 was used. As we increased the value of k, 
the accuracy became less. Table 4 shows that KNN gives 
less accuracy for different sensors compared to the ANN 
algorithm. Furthermore, similarly to the ANN test, the highest 
accuracy of both accelerometer sensors was 95.1%, however, 
the result for each sensor separately has weak performance. 
In addition, merging the gyroscope sensors did not give 
higher accuracy, to the contrary, it has worse performance.

In the proposed approach of SVM, the classification 
is used to identify user activity based on different sensors 
and their combinations. We used multiclass Support Vector 
Machine with RBF kernel, which gave the best results. Table 
4 depicts the accuracy of different sensors combinations 
resulted from SVM algorithm. This algorithm provided 
the best performance for different sensors data compared 
with other algorithms, and the accelerometer sensors of 
smartphone and smartwatch gave the optimum accuracy 
when used together, achieving approximately 97.7%. The 
same accuracy was obtained when all sensors used together.

Consequently, phone accelerometer provides better 

performance compared with other single sensors. Watch 
sensors have worse classification than phone sensors, 
since the watch is more related to hand movement than to 
body movement. Integrated gyroscope sensors give very 
bad results compared to integrated accelerometer sensors, 
because gyroscope is not so easily accessed in smartphones 
and smartwatches as accelerometer.

In this analysis, the confusion matrices of each model 
with combined data from accelerometer sensors were 
developed in order to examine the results in detail, where 
detailed accuracy and precision tests are also given for each 
class. 5182 research instances were tested with about the 
same number of instances per class. The confusion matrices 
imply that the uncertainty between walking-stairs and 
sitting-standing activity pairs causes many of the predictive 
errors.

Tables 5-7 show that the most ineffective recognition 
of the tests results by the KNN method. The walk activity is 
mixed with stairs. Hence, the KNN classifier fails to identify 
these events, which means that about 8% of the walk and 
stair event classifications are ineffective. This is because of 
the correlation of the acceleration data patterns between 
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“walking” and “stairs”. Additionally, KNN misclassifies 
standing as being sitting. We managed to run a further series 

of experiments using ANN and SVM to restrict the confusion 
between those activity pairs.

ANN
Predictive Activity

Walk Jog Stairs Sit Stand

Actual Activity

Walk 257 0 18 1 0
Jog 0 258 1 0 0

Stairs 8 2 308 2 1
Sit 1 0 5 351 4

Stand 1 0 1 8 327
Accuracy% 93.1 99.6 96.0 97.2 97.0
Precision% 96.3 99.2 92.5 97.0 98.5

Table 5: Confusion Matrix of Accelerometer Sensors Data using ANN Algorithm.

By evaluating the confusion matrix for both the KNN 
algorithm with that of the ANN algorithm, we realize that in 
terms of overall accuracy, the ANN algorithm surpasses the 
KNN algorithm. Using the ANN algorithm instead of the KNN 
algorithm, an improvement of 1.5% in overall accuracy is 
attained. The ANN algorithm further increases the precision 

of the walking and stairs classification by 3.9% and 2.0%, 
respectively. However, the sitting and standing classes are 
still found to be misclassified since both of them have no real 
movement or a transition in x and y directions, and only the 
change comes in z.

KNN
Predictive Activity

Walk Jog Stairs Sit Stand

Actual Activity

Walk 254 1 17 0 4
Jog 2 252 4 1 0

Stairs 18 0 297 3 3
Sit 1 1 3 351 5

Stand 0 0 7 5 325
Accuracy% 92.0 97.3 92.5 97.2 96.4
Precision% 92.4 99.2 90.5 97.5 96.4

Table 6: Confusion Matrix of Accelerometer Sensors Data using KNN Algorithm.

Table 7 reflects the confusion matrix arising from SVM 
classification of the integrated accelerometer sensors. The 
results are significantly improved and they have shown that 
SVM is more accurate than other algorithms. It has reached 

100% accuracy for jogging activity even though stairs are still 
the most difficult activity to recognize. In terms of precision, 
the SVM algorithm executes by 1.6% and 3.1%, respectively 
better than the ANN and KNN algorithms.

SVM
Predictive Activity

Walk Jog Stairs Sit Stand

Actual Activity

Walk 268 0 8 0 0
Jog 0 259 0 0 0

Stairs 2 5 312 2 0
Sit 0 0 4 356 1

Stand 0 0 0 4 333
Accuracy% 97.1 100.0 97.2 98.6 98.8
Precision% 99.3 98.1 96.3 98.3 99.7

Table 7: Confusion Matrix of Accelerometer Sensors Data using SVM Algorithm.
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For more details about each smartphone and smartwatch 
accelerometer sensor, Tables 8 & 9 respectively show the 
confusion matrices built using SVM model for these sensors. 
The confusion between the activities mentioned above can 
be obviously observed. It can also be found that the phone 
accelerometer shows greater overall accuracy compared 
to watch accelerometer and has the ability to differentiate 
between the activities where certain confusion exists. 
However, the watch accelerometer has more potential than 
the phone accelerometer to identify jogging activity and 
significantly minimize the uncertainty between jogging and 

other activities such as walking and stairs. This is because 
the hand movement in jogging is very distinct and has higher 
acceleration values than walking or stairs that makes the 
accelerometer of the watch better than the accelerometer 
of the phone in differentiating between such activities. For 
integrated accelerometer sensors as in table 7, the overall 
accuracy and the ability to distinguish between the activities 
where their confusion occurs is better than the case when 
using each accelerometer sensor individually, achieving 
overall accuracy of 97.7%.

SVM
Predictive Activity

Walk Jog Stairs Sit Stand

Actual Activity

Walk 343 10 27 1 1
Jog 2 385 2 1 0

Stairs 0 9 342 0 1
Sit 0 3 4 371 5

Stand 1 0 3 5 377
Accuracy % 89.8 98.7 97.2 96.9 97.7
Precision % 99.1 94.6 90.5 98.2 98.2

Table 8: Confusion Matrix of Phone Accelerometer Data using SVM Algorithm.

SVM
Predictive Activity

Walk Jog Stairs Sit Stand

Actual Activity

Walk 268 2 28 0 1
Jog 0 293 0 1 0

Stairs 25 8 255 0 0
Sit 2 0 4 309 5

Stand 2 1 2 25 291
Accuracy% 89.6 99.7 88.5 96.6 90.7
Precision% 90.2 96.4 88.2 92.2 98.0

Table 9: Confusion Matrix of Watch Accelerometer Data using SVM Algorithm.

Conclusion

The combination of data from the smartphone and smart- 
watch accelerometer and gyroscope sensors evaluated the 
subset of sensors to know which are the most accurate in 
identifying a given set of activities. Initially, we investigated 
the performance of five different classifiers using WEKA, 
after that we assessed the performance of different sensor 
combinations using ANN, KNN, and SVM algorithms, showing 
that SVM is more accurate among them. This project further 
demonstrates that the maximum performance would be 
resulted from the smartphone and smartwatch accelerometer 

sensors integrated together. The research highlighted in this 
project can be extended by adding many more activities with 
that training data. Additionally, the application of deeper 
learning to this problem would be very successful, where 
it would have the capacity to advance the performance by 
inevitably developing basic representations of features.
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