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Abstract 

Regulatory T cells (Tregs) are distinct type of T-cells which provide feedback control to any immune response. They are 
necessary to stop the immune response after the antigen has been successfully recognized. In the tumour micro-environment, 
the tumour often modulates the immune cells surrounding it in a way that it converts a large population of activated T-cells in 
to Tregs. For instance, tumours have been known to secrete IL-10 an inhibitory cytokine which is necessary for Treg formation. 
The tumour also modulates Dendritic cells (DC) and Macrophages so that they secrete inhibitory cytokines and promote 
tumorigenesis. Commonly, a Treg response to cancer cells, is to suppress the active immune response to the cancer. This 
review describes the recent studies of Treg cells in different human malignancies and discusses the restoration of antitumor 
immunity by depletion or reduced the functional strength of Treg cells hence, providing a promising tool to perfectly managing 
antitumor immune responses. 
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Abbreviations: DC: Dendritic Cells; Tregs: Regulatory 
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Introduction

The features of regulatory T (Treg) cells make them 
not only an added value and a significant milestone in the 
field of immunology but also provide an explanation for 
T-cell-mediated immunosuppression. T-cell-mediated 
immunosuppression [1-6]. An emerging evidence suggests 
that Treg cells play a significant role in tumor immunology 
and contribute to tumor growth and progression, thereby 
having a crucial prognostic value for cancer patients [7-12]. 
Peripheral blood immune cells include lymphocytes which are 

a complex type of leukocytes that direct the body’s immune 
system. These cells are divided into three main types: (1) T 
helper cells: have CD4 (glycoproteins on the surface) which 
is recognized by MHC class II molecules on the antigen, (2) T 
cytotoxic cells: have CD8 which is recognized by MHC class 
I molecules on the antigen and (3) T regulatory cells: have 
CD4 and CD25 on the surface [13,14]. These are the negative 
regulators and act by suppressing the immune responses. 
Tregs appear to have a significant role in suppressing tumor-
specific immunity. That is, they seem to prevent the immune 
system from attacking tumors [15]. Tregs, in general, prevent 
immune responses against “self-antigens” which are a part of 
one’s own body. Accordingly, a Treg response to cancer cells, 
is to suppress the active immune response to the cancer. 
Autoimmunity is regarded as a potential outcome of tumor 
immunity, the mechanisms of autoimmunity and tumor 
immunity are associated [16].
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Origin of Regulatory T Lymphocytes

Treg field was launched through the work of Sakaguchi, 
et al. [14] who in 1995 reported that a small group of T cells 
with particular cell surface phenotype (CD4+ cells which 
co-express the IL-2 receptor-α chain, CD25) maintain self-
tolerance and that breakdown of this tolerance could lead 
to autoimmune disease and CD4+CD25+ T cells were named 
Treg cells. Now the terms “suppressor T cells” and “regulatory 
T cells” are used instead, but the term “regulatory T cells” is 
preferred by most researchers. Work in the field of Treg cell 
immunology was greatly enhanced in 2003 by the discovery 
and characterization of the Treg-specific gene, FoxP3 [17-
23].

Regulatory T Lymphocytes and Helper T 
Lymphocytes 

Regulatory T cells inhibit immune responses. Helper T 
cells tend to promote a given immune response by turning off 
other pathways. Interferons are classified as cytokines, small, 
secreted proteins that help regulate immune responses in a 
variety of ways. For example, a Th1 T helper cell will secrete 
IFN-gamma and will help to turn off Th2 responses and other 
non-Th1 responses. It will help provide IL-2 to cytotoxic T 
cells (CD8+ T cells) which is needed for survival. The T cell 
cytokine interleukin-2 (IL-2) is essential for the homeostasis 
of regulatory T (Treg) cells that suppress (auto) immunity 
and stimulates immune responses mediated by conventional 
T cells. Moreover, they will also license antigen presenting 
cells (APCs) to promote strong cytotoxic T cell responses 
and will allow the APCs to secrete polarization cytokines 
for a longer period of time, enhancing immune responses. 
The produced IFN-gamma can kill cancerous cells by means 
of perforins. These pore-forming proteins allow access for 
serine proteases called granzymes to the cytoplasm of the 
cell about to be killed. Granzymes also can initiate apoptosis 
through activation of caspases [24-28].

Treg and Tumor Microenvironment 

Tumor cells are in tumor microenvironment (TME) 
able to shuffle off apoptosis and dodge immune surveillance 
[29,30]. The TME comprises of many immunosuppressive 
cells including regulatory T (Treg) cells, T helper type 2 
(Th2) cells, tumor-associated macrophages (TAMs), myeloid-
derived suppressor cells, and, in some case, Th17 cells [31-
33]. Therefore, immunotherapy has a significant value to 
modulates host immune response and actively restores 
the specific anti-immunity to cancer. The tumour micro 
environment has a significant role in cancer development 
and metastases. The tumour is able to progressively change 
its surrounding environment and make it more prone to 
grow. There is a pretty recognition that tumour growth 

can be modulated by actively changing the tumour micro 
environment. Despite the Treg has the ability to maintain 
immune regulation it can be unfavorable in cancer through 
suppression of anti-tumor immunity [34-36]. Humans 
that lack a functional Treg population develop a lethal 
autoimmune disorder, termed Immune dysregulation. 
Certainly, high numbers of Tregs and a low CD8+ T cell: 
Treg ratio are considered poor prognostic factors for many 
tumor types, including melanoma, head and neck squamous 
cell carcinoma (HNSCC), ovarian cancer and colorectal 
carcinoma [37-41]. Accordingly, it has become apparent that 
the possibility of identifying the targeted pathways to reduce 
intratumoral Tregs, will provide a therapeutic approach in 
many patients with malignancy, while if a disruption occurs 
in the peripheral Treg number or function therefore, it will 
cause autoimmune diseases or inflammatory complications.

Foxp3+ Treg

Regulatory T (Treg) cells, with the master regulator 
Foxp3 (forkhead box P3), represent a functional distinct 
subset of CD4 T cells which make the Tregs able to 
do immune suppression and play a significant role in 
maintaining immune-homeostasis and autoimmune diseases 
[42-44]. Foxp3+ Treg cells exert their effector functions 
through a variety of molecular mechanisms. Firstly, Treg 
cells constitutively express the high-affinity heterotrimeric 
interleukin 2 (IL2) receptor, also known as CD25, which 
further bind to and consume IL2 from their surroundings, 
thus compromising its effects on non-Foxp3 effector T cells 
(Teff) [45,46]. Treg cells also express high level of cytotoxic T 
lymphocyte antigen 4 (CTLA4), which can bind to CD80/CD86 
on antigen presenting cells (APCs) and thereby transmitting 
suppressive signals to these cells and reducing their capacity 
to activate Teff cells [47]. Besides, CTLA4 exhibits a higher 
affinity to CD80/CD86 than that of CD28, thus competing 
with this co-stimulatory receptor, which further disrupts 
the priming and/or activation of Teff cells [48]. Additionally, 
Treg cells can produce immunosuppressive cytokines, such 
as TGFβ, IL10, and IL35 [49], which will downregulate the 
activity of APCs and Teff cells, and secrete granzymes and 
perforin that can directly kill these cells [50]. Similarly, CD8 
memory T cells consisting of effector memory T cells (TEM), 
central memory T cells (TCM) and tissue-resident memory T 
cells (TRM) [51]. Thymus derived Treg (tTreg) cells can also 
be divided as central (cTreg) and effector (eTreg) Treg cells 
based on the expression of trafficking receptors [52]. cTreg 
cells are programmed to recirculate through secondary 
lymphoid organs (SLOs) by expressing CD62L as well as CCR7, 
while eTreg cells capable of entering non-lymphoid tissues 
by virtue of expressing chemokine receptors such as CXCR3, 
CCR4, CCR6, CCR2, and CCR5, etc [53]. A number of adoptive 
transfer studies have reported that the TLR3L poly(I:C) 
is a potent adjuvant for CD8+ T cell responses, through 
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increasing T cell number, function, cytokine production, 
and anti-tumor response [54]. These adjuvant effects were 
associated with increases in the by increasing the numbers 
of dendritic cells in mice and in pancreatic cancer patients 
as well as increases in the numbers of NK cells in mice. In 
addition, in vivo administration of poly(I:C) at the peak 
of dendritic cell (DC) expansion after cyclophosphamide 
treatment induces inflammatory cytokine production and 
increases in the number of activated DCs in lymph nodes. 
Also, that poly(I:C) target CD8+ T cells directly and activate 
them in vitro, where adoptive transfer of these cells resulted 
in appreciated antigen-specific CD8+ T cell response and 
greater expansion in vivo. cTreg cells could convert into 
more highly proliferative eTreg cells in response to tissue 
self-antigens. Notably, eTreg cells have also been observed 
in increased numbers within diverse experimental mouse 
tumors and human cancers which suggest the involvement 
of Treg cells in anti-tumor immunity [55-58].

Treg cells are involved in tumor development and 
progression by inhibiting antitumor immunity. The 
Regulatory T (Treg) cells suppress abnormal/excessive 
immune responses to self- and nonself-antigens to maintain 
immune homeostasis. Regulatory T (Treg) cells expressing 
the transcription factor Foxp3 has an essential role in 
controlling autoimmunity and maintain immunological 
tolerance in mouse and human [59]. Treg cells can exert their 
suppressor function in non-lymphoid tissues as evidenced 
by specific tissue lesions in mice with selectively impaired 
Treg cell migration. In addition to secondary lymphoid 
organs, Treg cells can exert their suppressor function in 
non-lymphoid tissues as evidenced by specific tissue lesions 
in mice with selectively impaired Treg cell migration [60]. 
Treg cells have also been found in increased numbers in 
diverse experimental mouse tumors and in human cancers 
[61,62]. While breast carcinomas have not traditionally been 
considered immunogenic, evidence of tumor infiltrating 
lymphocytes and their subset composition paralleling 
disease progression suggest that the underlying interactions 
of these tumors with immune cells are important. An 
increased ratio of CD4+ to CD8+ T cells correlates with lymph 
node metastases and reduced overall survival [63]. Increased 
presence of Treg cells in breast tumor biopsies is associated 
with an invasive phenotype and diminished relapse-free as 
well as overall survival this suggesting a reduced antitumor 
specific immunity by the action of the Treg cells [64-66].

Prognostic Value of Tumor-Infiltrating T 
Regulatory Cells (TI-Tregs) 

Numerous studies reported the presence of unlimited 
number of Treg cells in various malignancies including, 
hepatocellular, gastric, lung, breast, ovarian, cervical, 
and melanomas [67-73] which reflecting the unfavorable 

prognosis in these tumors. On the contrary, other studies 
reported a favorable role of FOXP3+ T-cells in colorectal 
carcinomas (CRC) [74-76]. The investigators explained the 
significance of CRC favorable outcomes is primarily due to 
the presence of higher expression of FOXP3 which is indeed 
infiltrated more with FOXP3loCD45RA+effector T-cells 
and upregulated inflammatory genes such as Il12a, Il12b, 
Tgfb1, and Tnf while, in other tumors a higher infiltration of 
FOXP3hiCD45RA− cells resulted in poor prognosis and lower 
disease-free survival [77].

Treg and Impact of Interleukin 10 (IL-10)

 Monocytes which are usually found in the blood can 
differentiate into either a macrophage or a dendritic cell. 
Based on chemical signaling from the nearby tissues, the 
monocyte can change into the required cell type. Dendritic 
cells (DCs) have the ability to control the immune response 
through induction and polarization of primary, antigen-
specific immune responses. According to their maturation/
activation status, their surface molecules, and the produced 
cytokines the DCs are either to evoke immune responses 
by activation of effector T cells or to induce tolerance by 
the induction of either T cell anergy, regulatory T cells, or 
production of regulatory cytokines. Among the cytokines 
produced by tolerogenic DCs, from one hand interleukin 10 
(IL-10) is a key regulatory cytokine limiting excessive T-cell 
responses to pathogens to prevent chronic inflammation 
and tissue damage also interleukin-10 (IL-10) acts as a poor 
prognostic marker in many cancers [78,79].

IL-10 is primarily produced by monocytes and to a 
lesser extent by type 2 T helper cells (TH2), mastocytes, 
CD4+CD25+Foxp3+ regulatory T cells, and certain subsets 
of activated T cells and B cells [80]. IL-10 can inhibit the 
synthesis of pro-inflammatory cytokines such as IFN-γ, 
IL-2, IL-3 and TNF-α produced by cells such as Mφ and 
regulatory T-cells4. Moreover, IL-10 can act on regulatory T 
cells to maintain transcription factor Foxp3 expression and 
suppressive functions in mice with colitis [81]. Regulatory T 
cells (Tregs) are present throughout the body and have. Tregs 
are able to prevent autoimmunity and immunopathology 
and maintaining immunological homeostasis suggesting 
their crucial role in immunity [82,83]. The role of IL-10 in 
cancer is to facilitate tumor immune escape suggesting that 
IL-10 in the tumor-microenvironment of different cancers is 
correlated with poor prognosis [84].

Depletion of Treg Cells and Restoration 
of Antitumor Immunity in Human Tumor 
Progression 

The specific immunity against tumor antigen 
could be improved through depletion of circulating 
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CD4+CD25highFoxP3+ Treg cells after multiple doses 
of immunotoxin, denileukin diftitox thus suggesting an 
encouraging outcome for combined Treg depletion and 
anticancer vaccines [85]. The experiments demonstrated 
that, the Treg cells in spleen, peripheral blood, and bone 
marrow of normal C57BL/6 mice were variously reduced 
after a single intraperitoneal injection of denileukin diftitox 
[86]. The reduction was peaked within 24 hours and 
continued almost for 10 days following injection. Injection 
of denileukin diftitox 1 day before vaccination has a positive 
impact on anticancer immunity evidenced by antigen-specific 
T cell responses above levels induced by vaccination alone. 
Therefore, the Treg cell depletion improves endogenous anti-
tumor immunity and the efficacy of active immunotherapy 
in animal models for cancer, suggesting that inhibiting Treg 
cell function could also improve the limited successes of 
human cancer immunotherapy [87]. In one study, authors 
reported that removal of Treg cells in tumor-bearing mice 
improved the function of adoptively transferred cells for new 
antitumor immunotherapies [88]. In other studies, authors 
allowing Treg cells to migrate to sites of disease more 
efficiently than effector cells include CCR4, CCR5, CCR6, CCR7 
and CCR8 [89,90]. They demonstrated that CCR5-dependent 
chemotaxis is essential for Treg cell migration into pancreatic 
adenocarinoma but if a disruption takes place to the signaling 
it would result in a decrease in migration of Treg cell into 
the tumor, allowing a decline in tumor growth [90]. Thereby, 
Treg cell migration with its collateral signaling into tumor 
microenvironment is considered a novel immunomodulatory 
strategy for the treatment of cancer.

Conclusion

The occurrence of Treg cells marked as 
(CD4+CD25+FoxP3+ T cells) have recently gained prominence 
through their prevalence in numerous malignancies. The 
broad growing understanding of the immune regulation 
is closely associated with the recognition of FOX-P3 which 
represents the receptor of Treg cells thus, tumor tissue helps 
to turn the naive T cells into FoxP3 Treg cells and accumulates 
Treg cells in tumor site, therefore declining the development 
of anti-tumor specific immunity. Nevertheless, the depletion 
of CD4+CD25+ Treg cells contributes to the restoration of 
the antitumor immunity through promoting the activation of 
immune T cells in the draining lymph nodes, thus, facilitating 
adoptive immunotherapy. The tumour often modulates the 
immune cells surrounding it in a way that it converts a large 
population of activated T-cells in to Treg cells. For instance, 
tumours have been known to secrete IL-10 an inhibitory 
cytokine which is necessary for Treg formation. The 
significance behind depletion of Treg cells is to abundantly 
reveal the T- cell antitumor activity and ligation of CD3 and 
CD28 enhances both innate (NKT cells) and adaptive (CD4 + 
and CD8+ T cells) responses to develop an antitumor micro-

environment which is able to suppress tumor growth.
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