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Abstract 

Comprised of a rich and complex microbial ecosystem, the human intestinal tract is both an immunological organ and 

supplier of the body’s energy demand and nutrient requirements. This intestinal microbiota provides a large reservoir of 

bacterial lipopolysaccharide, (known also as endotoxin) that has an immediate stimulatory action on the innate immune 

system. The gut has evolved mechanisms to detoxify endotoxin and neutralise its potential inflammatory properties. 

However, this potent inflammatory molecule is transiently detectable in the circulation of healthy individuals following 

ingestion of food by virtue of a transient gut epithelial permeability arising from the digestive process itself. This acute 

post-prandial inflammation is somewhat dependent on meal composition with energy rich meals dense in saturated fat 

and low in fibre and polyphenols exacerbating the process. Chronic exposure to circulating endotoxin by this mechanism 

has been associated with a dysregulated cardiometabolic phenotype and risk of cardiovascular disease. Spending the 

majority of wake time in the post-prandial state therefore may contribute to the pathogenesis of these diseases. In this 

review, I present an overview of the mechanisms by which post-prandial inflammatory events and raise the possibility of 

modulating meal frequency as a dietary tool to, at least in part, ameliorate the detrimental outcomes of endotoxemia. 
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Introduction  

Designed to facilitate digestive function, the 
gastrointestinal tract forms the largest mucosal interface 
of the body with the outside world, supplying the body’s 
energy demand and nutrient requirements. However, this 
anatomical set-up exposes the intestine to a variety of 
physiological and antigenic challenges. On the one hand, 
an intact intestinal barrier protects the human organism 
against invasion of microorganisms and toxins, on the 
other hand, this barrier must be open to absorb essential 
fluids and nutrients. Such opposing goals are achieved 

only by the complex anatomical and functional structure 
of the intestinal barrier. The term ‘intestinal 
permeability’, also known as leaky gut, refers to the 
functional status of this barrier. The intestinal barrier also 
has a long history as an immunological organ, hosting 
more immune cells than any other location in our bodies 
[1]. Living alongside a microbial ecosystem, these 
potential combatants are actually collectively responsible 
for a wide array of critical immune-regulatory tasks. Thus, 
the intestinal barrier is complex and multi-layer both 
physical and functional, immune and microbial. 
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Falling Through the Cracks 

Appropriate fluctuations in permeability of the 
intestinal epithelium is a functional feature crucial for the 
balance between nutrient absorption during ingestion of a 
meal and microbe exclusion from the underlying lamina 
propria. A scaffold of tight junctions (TJ) including 
zonulins, occludins, claudins and junctional adhesion 
molecules modulate movement from intestinal lumen to 
bloodstream. Digestion itself negatively affects TJ 
assembly, increasing gut permeability and permitting the 
transient presence of low doses of pro-inflammatory 
bacterial compounds into the blood, termed endotoxemia 
caused by Lipopolysaccharide (LPS, also known as 
endotoxin), a component of the gram-negative bacterial 
cell wall translocating the epithelial barrier. Endotoxin 
has an immediate impact on the activation of the distil 
innate immune system via Toll-like receptors leading to 
intracellular activation of nuclear factor factor- B (NF-

B), systemic inflammatory cytokine release (including 
Tumour Necrosis Factor-  - TNF , Interleukin-1 - IL-1 
and interleukin-6 IL-6) which participate in the 
pathogenesis of epithelial barrier dysfunction and trigger 
release of acute phase proteins (including C-reactive 
protein - CRP and Serum Amyloid A - SAA) by the liver 
[2,3]. The mechanisms of these postprandial 
inflammatory responses are exaggerated by lipaemia and 
increased chylomicron formation and triacylglyceride 
(TAG) content in circulation. Chylomicron and TAG 
adherence to, and activation of, monocytes further 
provokes the immune response [4,5]. Interestingly, TAG 
levels increase from baseline in a similar pattern to 
endotoxin over a four-hour post-prandial period but 
despite higher baseline, TAG levels did not increase 
significantly in metabolically compromised over healthy 
individuals.  
 

Acute by Design 

Digestion in and of itself is an inflammatory process 
producing endotoxemia and low-grade inflammation by 
virtue of epithelial permeability and microbial products 
translocating to the blood where they switch on 
inflammatory events [6]. Inflammation is acute by design. 
In healthy adults, the majority of post-prandial 
inflammatory cytokine events are short-lived, detected as 
early as one hour after a meal and remaining elevated for 
up to four hours [7,8]. Acute phase SAA and CRP follow 
quite different kinetics with almost no detectable increase 
up to five hours before a slow rise to peak at around 24 
hours. While this is a normal physiological phenomenon, 
an energy rich ‘western-style’ diet significantly increases 
this mechanism and data are now accumulating that 

emphasise the importance of epithelial barrier integrity to 
minimising LPS translocation to overall health [9,10]. 
High fat intake has also received particular attention in 
induction of epithelial permeability. Not only do high fat 
diets encourage gram negative bacteria at the expense of 
gram positive, but endotoxin has a strong affinity for 
chylomicrons (lipoproteins that transport dietary lipids 
including long-chain saturated fatty acids (SFAs) through 
the gut wall) and, as such, can cross the gastrointestinal 
mucosa coupled with damaging lipoproteins [11,12]. 
Thus, fat intake may induce endotoxemia via enhanced 
intestinal absorption related to chylomicron formation. 
However, it has also been suggested that total energy 
intake, rather than fat intake per se, confounds these 
previous observations [13]. The ‘leaky gut hypothesis’ 
explains how frequent or inappropriate intestinal barrier 
permeability is associated with the incidence of disease 
including cardiometabolic diseases, type two diabetes and 
other inflammatory and autoimmune syndromes [14,15]. 
Efforts to identify sources elevating systemic 
inflammatory tone have implicated gut-derived endotoxin 
as a trigger [7]. This has led to the common assumption 
that such conditions may reflect a chronic low-level LPS 
driven activation of the systemic innate immune system 
[16,17]. Unlike higher doses of serum LPS such as those 
seen in the case of sepsis, post-prandial low level 
circulating endotoxin has little impact on malaise and 
temperature while retaining more subtle inflammatory 
features [18-20]. It should be borne in mind that the 
majority of studies evaluating endotoxemia are done in 
the fasted state thus the kinetics of experimentally 
induced endotoxemia could differ from the post-prandial 
physiological state coming from a meal. In addition, 
means used to assess permeability can vary widely and 
have been reviewed elsewhere [9,21].  
 

Regulation by Mouth & Microbes 

To counter the various dietary barrier disruptors, 
extensive epithelial TJ networks are dynamically 
regulated by a diverse array of protective factors many of 
which recruit the use of the cacophony of bio-active 
compounds in the diet, the microbiome themselves and 
their metabolites. Short chain fatty acids (SCFA), the 
microbial fermentation products of dietary fibre are one 
well documented example [22,23]. These end-products of 
microbial fermentation facilitate tight junction assembly 
and stimulate the production of intestinal alkaline 
phosphatase involved in regulation of chylomicron 
transport and detoxification of endotoxins [24,25]. More 
recently, Vitamin D has been shown to modulate tight 
junctions [26]. Finally, polyphenols, natural plant derived 
metabolites known to exert various anti-inflammatory 
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and antioxidant benefits, as recently shown by Yang et al. 
to have a beneficial effect on the epithelial barrier 
integrity [27]. Polyphenols are considered to exert their 
protective effects on the epithelial barrier by targeting 
different members of the NF- B family and antagonising 
subsequent pro-inflammatory cytokine production that 
cause TJ disassembly. In vitro, naringenin, a major 
polyphenol in citrus fruits and curcumin, a major 
polyphenol in turmeric enhanced tight junction formation 
and barrier integrity and in vivo, countered chemically 
induced gut epithelial damage [28-30]. Grape seed extract 
(GSE) that contains a mixture of polyphenols reduced 
endotoxemia in experimentally induced compromised 
barrier integrity and promoted the mRNA expression of 
TJ proteins [31]. In addition, resveratrol, a polyphenol 
extracted from grape seed and skin, promotes the mRNA 
expression of TJ proteins [32]. The role of NF-B in the 
impairment of the intestinal barrier is further supported 
by treatment with the NF-B inhibitor 
pyrolidinedithiocarbamate [33]. Piegholdt reported the 
isoflavonebiochaninA improved TEER in NF-B/TNF-
induced disruption of barrier integrity in vitro [34]. 
Sirtuin 1 (SIRT1) is a NAD+-dependent protein 
deacetylate that sense environmental stress to alter 
intestinal integrity. SIRT1 has recently gained attention 
due to its association with increased longevity and as a 
protective upregulated by fasting [35]. Resveratrol, an 
agonist of SIRT1, alleviates TNF- induced TJ Zonulin-1 
disturbances leading to epithelial permeability in the gut 
[36].  
 

Meal Frequency as a Health Modulator  

Data assessing reduced meal frequency without 
calorie restriction have found little or conflicting impact 
on traditional cardiometabolic parameters such as body 
weight, plasma lipids or glucoregulatory factors [37,38]. 
Moving beyond traditional cardiometabolic parameters to 
the inflammatory process itself has only recently 
garnered significant investigative support. Consequently, 
there is a paucity of information on the effects of dietary 
intervention to markers of inflammation in 
cardiometabolic patients [39]. Considering low-grade 
inflammation may be acting upstream of traditionally 
assessed cardiometabolic risk factors, modification of 
meal frequency has potential to make an immediate and 
easily implementable clinical management tool 
particularly for obesity where current therapeutics are 
limited and offer only modest improvements. Obese 
women who changed their diet from multiple daily meals 
to alternate-day restriction exhibited significant 
reductions in levels of circulating TNFand IL-6 [40]. 
However, moving upstream to inflammatory markers 

such as IL-6 and CRP is also complicated by ongoing 
controversy regarding their causal role and challenges in 
measurement due to circadian variation and dietary post-
prandial effects [41-43]. With the knowledge that 
metabolically ‘at risk’ individuals show exacerbated 
endotoxaemic responses, advising more frequent meals, 
even if they are smaller, has potential to allow endotoxin 
to spike several times per day thus precipitating low-
grade inflammation without desensitisation. Resulting 
downstream production of inflammatory and acute phase 
molecules would be in continuous production, as previous 
in vivo and in vitro studies have demonstrated [44-49]. 
This cumulate effect may actually exacerbate their 
inflammatory risk regardless of dietary content or energy 
balance but would be further aggravated in those 
consuming a high fat, low fibre/polyphenol content with 
gut dysbiosis.  

 
Although known for quite some time, post-prandial 

epithelial permeability and consequential endotoxemia 
has yet to translate into a dietetic approach. The UK 
National Institute for Health and Care Excellence (NICE) 
advise a Mediterranean style diet based on a body of 
epidemiological, physiological and observational evidence 
demonstrating that such changes in diet are associated 
with reductions in morbidity and mortality from 
cardiovascular disease [50,51]. Current guidelines on 
meal frequency are often entangled with calorie reduction 
strategies [52]. For example, current recommendations 
for type 2 diabetics is to consume five small meals a day, 
presumed as a strategy to reduce hunger and therefore 
total energy intake although there are no clear insights 
into the supporting evidence. Kahleova et al. reported 
eating two larger meals as more effective than six smaller 
meals [53]. Observational trials in human indicate that 
eating more frequently than three times per day may play 
a role in obesity [54]. Other studies stress the division of 
food intake should be frequent but based on individual 
preference, with no clear recommendations on number of 
meals. As new data now demonstrates, society has crept 
towards a continual snacking routine and we now spend 
the majority of waking time in a post-prandial state [55]. 
Understanding the contribution of meal frequency and its 
acute and cumulative effects on inflammatory risk 
therefore warrants further investigation since leaving 
frequency to preference may not be beneficial, 
particularly in at risk populations.  
 

Though studies have correlated increased eating 
frequency with increased body weight, what is not yet 
clear is how spending significant periods in the post-
prandial state impacts metabolic risk in healthy adults 
cumulatively over a long-period of time [56,57]. What we 
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do know is that reduced frequency of eating through 
intermittent fasting (IF) and time-restricted eating (TRE) 
is an important aspect of eating frequency that claims to 
have broad effects on human health span and offers an 
innovative strategy to prevent and treat metabolic disease 
[58,59]. Restricting the food improves metabolic profiles 
but data from humans are limited. Mice under time-
restricted feeding given equivalent energy intake from a 
high fat diet as those with ad libitum access are protected 
against obesity and metabolic abnormalities [60,61]. In 
addition, eating aligned with the diurnal circadian pattern 
of humans attenuates metabolic disease arising from a 
variety of obesogenic diets proportional to fasting 
duration and maintained even when temporarily 
interrupted [58]. Cyclical changes in the gut microbiome 
resulting from diurnal feeding and fasting rhythms 
contribute to the diversity of gut microflora and represent 
a mechanism by which the gut microbiome affects host 
metabolism. An extended fasting period (i.e., gut rest) 
could also lead to reduced gut permeability and 
upregulation of SIRT1, as a result, blunt postprandial 
endotoxemia and systemic inflammation [62-64]. 
Whether via IF, TRE or reducing the number of meals, we 
cannot ignore that dietary eating patterns impact health 
and disease [65]. Spending a large portion of time out-
with the post-prandial state offers both a potential 
preventative and therapeutic intervention against diverse 
cardio-metabolic health challenges. Diet is not the only 
factor to cause barrier permeability and barrier 
permeability is not the only contributor to low grade 
systemic inflammation [66]. An individual’s risk of 
inflammatory disease result from the interplay of many 
factors including social, environmental and genetic 
contributions. At a time when inflammation is a unifying 
theme of the many lifestyle and age related diseases that 
are rapidly increasing in prevalence, medicine is moving 
toward modifiable lifestyle-based paradigm.  
 

Conclusion 

History is teaching us that it is an unhelpful 
reductionist tendency neither to pit individual causative 
dietary constituents against each other nor to discount 
the medications and procedures used as treatments. 
Ultimately, a meal is the sum of its parts, by studying 
centrality of dietary patterns and behaviours, away from 
isolated nutrient and energy intake, the minutia of 
individual dietary constituents become less relevant. 
While the role for saturated fat in cardiovascular disease 
remains heavily debated, there is no doubt that saturated 
fat can exacerbate dietary perturbations to the 
endothelium further facilitating LPS transfer via 
chylomicron formation [67-76]. Nor is there any dispute 

over continuing to promote the key role of lifestyle 
interventions such as regular exercise and consuming a 
fibre, nutrient and polyphenol dense diet for good 
cardiometabolic health and reducing unruly 
inflammation. But as the majority moving towards 
spending the majority of waking time in a post-prandial 
state cumulatively promote the inflamed state, reduced 
meal frequency may be preventative in nature with the 
benefits accruing over lifespan rather than prescribing a 
change in eating pattern after a diagnosis.  
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