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Abstract 

A general hindrance to research and clinical surveillance in the Arctic and sub-Arctic is the lack of early measured, 

supporting biomarkers for risk assessment. The increasing prevalence of visceral obesity is a risk factor for metabolic 

syndrome and has been associated with an increased risk for type-2 diabetes. Environmental chemical pollutant 

exposure can have an impact on adipose tissue function. 

The common sources of exposure for metals in the Arctic are air, water and food. Metals have been reported to affect 

behavior of adipocytes; methyl mercury has been shown to be cytotoxic to differentiating adipocytes. This impact on 

differentiation suggests that GLUT-4 as a biomarker for the impairment of the insulin-signaling pathway would be a 

valuable tool for studying type-2 diabetes and metabolic syndrome. The Glucose transporter 4 (GLUT-4) is a widely 

studied biomarker in myocytes, adipocytes and more recently peripheral blood mononuclear cells (PBMC). PBMC GLUT-4 

may be a good molecule for studying the impacts of mercury in different sentinel species residing in the North. GLUT-4 

has been studied in both canines and humans and samples from both species can be obtained from rural Arctic 

communities. 
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Introduction 

     Tens of thousands of industrial and personal product 
chemicals are in use today and distributed globally, often 
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ending up in the Arctic. Many of these chemicals, such as 
mercury, have potential health risks to humans and other 
organisms in the environment [1-3]. Lead, mercury and 
cadmium are commonly used metals that have led to 
widespread contamination of food and water [3,4]. There 
is currently a scarcity of information regarding the effects 
of exposure to these metals on cytokine regulation when 
released by adipocytes as it pertains to the related 
syndromes of obesity and type 2 diabetes (T2D) [5,6].  
 
     Glucose homeostasis is related to insulin signaling and 
Glucose Transporter-4 (GLUT-4). GLUT-4 resides on small 
intracellular vesicles that are translocated to the plasma 
membrane in response to insulin and facilitate the uptake 
of glucose [7]. The ability to track GLUT-4 is essential to 
understanding whole body glucose homeostasis. GLUT-4 
trafficking represents a potential early defect and 
contributes to insulin resistance in diabetes [8]. Studies in 
both humans and dogs, have demonstrated the presence 
of white blood cells containing GLUT-4 which suggests 
that measurement of GLUT-4 levels in peripheral blood 
mononuclear cells (PMBC) has the potential to be used as 
a biomarker for insulin resistance [9-12]. 
 
     This creates the possibility of correlating plasma metal 
or persistent organic pollutants (POPs) exposure to the 
PBMC GLUT-4 levels, and developing a quantitative risk 
exposure model for T2D and Metabolic syndrome (Met S) 
in rural and extreme environments.  
 

Traditional Lifestyle 

     Over the past 100 years, societies in the North 
American Arctic and sub-Arctic have transitioned toward 
the “Western diet”, composed primarily of highly 
processed ‘factory foods’ high in sugars, omega-6 and 
saturated fatty acids, and low in fiber, phytoactive 
compounds from fruits, and omega-3 fatty acids. This 
‘nutrition transition’ has been identified as playing a 
central role in the significant development of obesity, 
insulin resistance, and metabolic syndrome, which in turn 
are major risk factors for cardiovascular disease and T2D 
[13-15]. 
 
     The American Diabetes Association lists American 
Indians and Alaska Natives as one of the highest risk 
populations for developing T2D, with a prevalence of 16% 
compared with a 9 % national average [16]. However, 
research that focuses solely on isolated Alaska Native 
communities, that preserve traditional diets, report lower 
rates of diabetes, even though obesity rates in these 
populations equal or exceed the national average. 
Geographic isolation in Alaska and the Arctic has retained 

the hunter gatherer lifestyle. Alaska Natives rely on 
traditional diets and have a historically low prevalence of 
diet-related diseases [17]. The relatively low rates of 
diabetes among Alaska Natives are attributed to diets 
high in fish and berries, along with the active lifestyle that 
accompanies hunting and gathering of traditional foods 
[18]. Alaskan villagers eat on average 4.8 kg of 
subsistence foods per week, 60% of which are finfish such 
as salmon [19-21]. The traditional Alaska Native diet is 
higher in omega-3 fatty acids than the diet of the general 
US population. Many types of berries are also common in 
Alaska and have been shown to have positive health 
effects, including anti-diabetic and anti-inflammatory 
properties [20,22]. Seasonal harvests are major 
community events especially in rural Alaska communities. 
People commonly harvest berries of the Vaccinium genus 
(bog blueberries, lowbush cranberries, and other wild 
berries), when the berries are ripe in July, August and 
September, and use them year-round both for food and 
medicine [22,23]. Climate change and global transport of 
contaminants may place the quality of subsistence food at 
risk in the future [23,24]. 
 

Dog Model 

     Dogs are an ideal research model for immune function, 
nutrition, exercise, toxicology and aging [12]. Because 
they possess key features associated with cognitive 
dysfunctions such as beta-amyloid pathology and 
oxidative damage, similar to that of humans, dogs are also 
a good model for the study of aging [11,25,26]. Dog 
mushing, once used primarily as a means of 
transportation in the North, has evolved into a popular 
national and international sport. Not only do dogs connect 
to people but this lends to diversity in climate, diet and 
location, providing great research opportunities. Dogs in 
northern climates are often exposed to the same 
environmental hazards as their human counterparts 
[25,27]. In many Alaskan villages, sled dogs are still a 
fundamental part of a traditional lifestyle, used for 
trapping, packing and transportation. Most of these 
communities are small settlements, established on or near 
rivers to facilitate travel and to gather food. Like humans, 
the dogs’ diet in Alaska and the Arctic is often comprised 
of a variety of wild game and fish [24]. High Hg levels 
have been found in dogs , but unlike humans Hg levels in 
dogs have not yet been correlated with metabolic 
phenotypes [28-30]. 
 
     Though there are species-specific pathologies 
associated with diabetes, dogs develop insulin dependent 
and independent forms of diabetes [28]. The prevalence 
of canine diabetes (classified into insulin deficiency 
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diabetes group) is significantly lower than human, which 
could be a result of better diagnostics in humans or an 
increased incidence of risk factors like obesity, for 
humans, or both. Dogs are a proven model for biochemical 
research and can be an innovative model to link activity 
and nutrition to the physiological and immune effects 
seen in metabolic syndrome and related disorders [12]. 
Also, for the circumpolar north, racing sled dogs are 
excellent models for studying the impacts exercise and 
nutrition have on metabolic syndrome. 
 

Metabolic Syndrome (Met S) 

     Obesity has become a major worldwide public health 
issue and has been characteristically linked with 
hypertension and inflammation as risk factors for 
Metabolic Syndrome (Met S), a group of several medical 
conditions associated with developing the risks of type 2 
diabetes and insulin resistance [30,32,33]. DeLong and 
Holloway have suggested that environmental exposure to 
synthetic chemicals, especially early life exposure to 
heavy metals, flame retardants and pesticides [28,30,31], 
may have a role in metabolic syndrome’s recent increase. 
However, there is little published information regarding 
the effects of prenatal or early childhood exposure to 
metals and adult glucose homeostasis [34]. While the 
correlation between Hg and PBMC GLUT-4 has not yet 
been explored, increased Hg levels have been correlated 
with lower anti-oxidant levels and higher TNF 
(unpublished) and leukotrienes B4 [29]. If, as proposed, 
Met S risk increases with early life exposure to 
contaminants, it would be worthwhile to use GLUT-4 to 
examine the connection between exposure and glucose 
homeostasis 
 

GLUT-4 as a Biomarker 

     Biomonitoring uses biomarkers of exposure such as 
metal or organic pollutant, or biomarkers of effect such as 
the induction of an enzyme or the movement of a 
transport protein. Biomonitoring the effects of a stress, 
such as environmental exposure, provides trend data 
which can be used to develop optional health advice 
regarding food consumption and lifestyle factors. A good 
biomarker can detect both spatial and temporal trends. 
 
     GLUT-4 plays a key role in the pathophysiology of T2D 
and is up regulated in response to exercise which 
enhances cellular glucose transport in skeletal muscle 
tissue [8,9,11]. Maratou and colleagues have 
demonstrated the presence of GLUT-4 in white blood cells 
(PBMC). This mechanism appears to remain intact in 

individuals with insulin resistance [10,33]. Details of the 
mechanism are poorly understood and are challenging to 
study due to the invasive nature of muscle biopsy. 
Peripheral blood mononuclear cells (PBMC) have 
documented insulin-sensitive GLUT-4 activity and may 
serve as a proxy tissue for studying skeletal muscle GLUT-
4 [35]. Recent studies indicate higher PBMC GLUT-4 levels 
in conditioned dogs and human athletes [11,12,35,36]. 
Differences in GLUT-4 levels use an easily accessible 
blood cell protein. The measurement of GLUT-4 provides 
a new biomarker for future studies with environmental 
stressors such as metal and pollutants. 
 

Conclusion 

     This commentary suggests the exploration of GLUT-4 
from PBMC as a proxy tissue for studying GLUT-4 
response to chemical stressors in individuals at risk for 
Met S. When concurrent monitoring of increased 
contaminant levels is available, a risk assessment model 
can be developed. 
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