
                                                                         Advances in Clinical Toxicology 
ISSN: 2577-4328 

Methyl Mercury, Adipokines, 3T3-L1 Cells and Diabetes                                                                                                                                                Adv Clin Toxicol 

  
Methyl Mercury, Adipokines, 3T3-L1 Cells and Diabetes 

 

Chauhan S1,2, Dunlap K1,2 and Duffy LK1* 

1Department of Chemistry and Biochemistry, University of Alaska Fairbanks, USA 

2Institute of Arctic Biology, University of Alaska Fairbanks, USA 

 

*Corresponding author: Lawrence K Duffy, Department of Chemistry and 

Biochemistry, University of Alaska Fairbanks, AK 99775-6160, USA, Tel: 907-474-

7525; Email: lkduffy@alaska.edu  

 

Abstract 

Diabetes is a contributor to morbidity across the globe and is often associated with obesity and metabolic syndrome. In 

addition to genetic and lifestyle factors, environmental factors such as metals and persistent organic pollutants may 

increase the severity or lower the threshold of these conditions. Studies are showing an association between these 

contaminants and both insulin sensitivity and glucose transport. In cell culture, mercury and methyl mercury are toxic to 

adipocytes and impact the secretion of cytokines and adipokines. We propose a research model using contaminants like 

methyl mercury on adipocytes to enhance the existing knowledge on the mechanistic influence of adipokines and reactive 

oxygen species on 3T3-L1 cell functioning. With this enhanced signaling model, anti-inflammatory agents could be tested 

at the biochemical level and lead to studies in animal models. Prospective model studies on mixtures of contaminants can 

contribute to better understanding about the development or severity of diabetes. 
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Introduction 

Methyl mercury (MeHg) is historically known to pose 
a threat to the ecosystem. MeHg, a potent neurotoxin, 
bioaccumulates and biomagnifies through the ecosystem 
and eventually to human beings [1]. 80%-90% of organic 
mercury in humans is from fish and shellfish intake [2]. 
Arctic communities residing in rural Alaska rely highly on 
fish as a staple food [3]. Also, MeHg crosses the human 
placenta and can impair the developing fetus [4]. Recent 
epidemiological studies suggest a correlation between 

MeHg exposure and eventual development of type 2 
diabetes and hypertension [5,6]. 

 
Many studies in the neurotoxicity of MeHg have been 

conducted to investigate the underlying mechanism [7-
10]. The potential effect of MeHg on other organ or cell 
types has not been extensively studied. In 2003, Barnes et 
al. looked at the effect of inorganic mercuric chloride on 
the process of adipogenesis which suggested mercury 
exposure can inhibit the differentiation process of pre-
adipocytes [11]. Later, in 2005, Barnes, et al. also 
concluded that the addition of mercuric chloride to the 
differentiated 3T3-L1 cells increased glucose transport 
[12]. 

 
To the best of our knowledge, only one study exists 

which has examined the effect of organic mercury, MeHg, 
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on the adipocytes, the specialized cells of the adipose 
tissue. In studying the cytokine Vascular Endothelium 
Growth Factor (VEGF) expression by 3T3-L1 cells, 
Vertigan, et al. observed that an exposure of 100ng/ml 
(0.4uM) of MeHg is cytotoxic to adipocytes [13]. 
Additionally, they found that 0.4uM MeHg exposure 
elevates the VEGF secretion during later stages of 
differentiation. 

 
However, the effect of MeHg on the mature adipocytes 

and on adipokines associated with the development of 
metabolic syndrome (Met S), such as adiponectin and 
resistin, have not been well studied. Moreover, no study 
exists on mitigating the negative effects of MeHg exposure 
associated with the diet. Cell culture studies on 3T3-L1 
cell line provide an experimental model for studying the 
effects of MeHg exposure and other contaminants on 
adipose tissue. MeHg has a high affinity for sulfhydral 
protein groups leading to S-mercuration. S-mercuration of 
cellular proteins is assumed to be involved in the 
mechanism underlying MeHg toxicity [8]. In the process 
of metabolism, MeHg undergoes reactions that increase 
the release of free radicals such as Reactive Oxygen 
Species (ROS) [2]. ROS causes oxidative stress and lipid 
peroxidation which has been suggested as a cause for the 
insulin resistance associated with type 2 diabetes [14]. 
Insulin resistance and dysfunctional insulin signaling lead 
to the onset of type 2 diabetes. Since low levels of MeHg 
are present in many foods, and is fat soluble, it is 
reasonable to investigate its relationship to adipokines. A 
cell culture model that can investigate MeHg mixtures 
with low levels of other contaminants would be useful 
[15]. 

 
The significance of a model focusing on the cell culture 

hierarchical level is threefold. First, there is a greater 
precision in measurement of the interaction of the 
adipokines in controlled experiments. Secondly, there is 
an increasing literature linking oxidative stress to 
diabetes and Met S. Thirdly, the cell culture system is 
easily adaptable to using multiple stressors such as 
mixtures of metals and endocrine disruptors. Such a 
design and the measure of the changes in various 
adipokines levels would give a more realistic picture of 
the impact of environmental exposure. The response of 
the adipokines in this model would provide the basis for 
new strategies in disease management.  

 
Since there is an increasing variety of the type of 

metals which the general population is exposed too, a 
significant public health issue understanding the impact 
of various metals, as well as mixtures, on the etiology of 
hypertension and diabetes. Studies in model systems are 

needed to clarify the underlying mechanisms such as the 
role of the balance of antioxidants [15,16]. 
 

Adipokines and Anti-Inflammatory Agents 

Adipokines such as adiponectin and resistin are 
proteins which are secreted from the adipocytes and are 
potential markers for metabolic syndrome [17]. Anti-
inflammatory agents may mitigate the effect of MeHg by 
reducing the amount of ROS formed. A natural compound 
derived from black tea, possess anti- inflammatory 
properties and it might be a potential therapeutic 
candidate for reducing inflammation [18]. Theaflavin-3,3’-
digigallate possess several active properties, one of which 
is the ability to fight ovarian cancer [19,20]. Natural 
products like organic tea compounds might protect 
individuals exposed to the normal concentration of MeHg 
found in Alaskan subsistence foods [21]. 

 
Obesity has also been linked with type 2 diabetes [22-

24]. Preliminary investigations regarding the effects of 
MeHg exposure on adipocytes will enhance the existing 
knowledge in this area of research. A central question 
would be “If MeHg increases basal ROS levels, would it 
interfere with adiponectin and resistin secretion patterns, 
thereby alternating insulin sensitivity and regulation of 
glucose transport?” Natural compounds such as 
theaflavin-3,3’-digigallate should be tested to observe 
their effect on MeHg interference on adipokines secretion. 

 
Alaskans eat, on average, more fish than the average 

American, since many living in rural Alaska have to rely 
on fish for subsistence [25-29]. Obesity rates are rising 
among Alaska Native populations and the amount of 
mercury found in the environment in Arctic regions has 
also been rising [30]. Little research is performed on the 
effect of MeHg exposure on organs other than brain. Thus 
far, Barnes et al and Vertigan, et al. have studied the 
effects on the 3T3 –L1 cells. Vertigan, et al. found that 
MeHg exposure of 100ng/ml is cytotoxic to the 3T3 L1 
cells and also increase VEGF secretion during later stages 
of differentiation [11-13]. Studies to observe the effect of 
MeHg on ROS levels and the effect of theaflavin-3,3’-
digigallate, or other anti-oxidants would contribute to the 
knowledge characterizing the system. 

 
Epidemiological studies suggest a correlation between 

the mercury exposure and eventual development of 
obesity and/or diabetes [5,6]. About 2 out of every 3 
Alaskan adults are now overweight or obese [31]. The 
likelihood of American Indian and Alaska Native adults to 
have diagnosed diabetes compared with non-Hispanic 
whites was 2.3 times higher in 2009 (16.1% vs. 7.1%) 
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[32]. However this correlation remains controversial as 
some studies suggests no such correlation between 
mercury and the development of any metabolic syndrome 
[33]. Regardless, more investigations are needed to more 
fully understand the effects of MeHg on adipose tissue. 

 
 Adipose tissue is a major endocrine systems present 

in the human body. Initially, it was considered only for 
storing excess fat tissue, but now that myth has been put 
to rest and adipose tissue is shown to be actively involved 
in regulation processes. Recent studies have shown that 
adipose tissue produces large amounts of biologically 
active and specific proteins also known as adipokines 
which play key roles in glucose and energy metabolism 
[17,34]. 

 
Adipose tissue is made up of highly specialized cells 

known as adipocytes, used for the storage and release of 
lipids. Other cell types in adipose tissue include blood 
cells, endothelial cells, pericytes and adipose precursor 
cells [35]. In recent studies, adipose tissue and adipokines 
were found to be involved in the pathogenesis of type 2 
diabetes [36-38]. The common cell type used for in vitro 
studies for the phenomenon of adipogenesis and 
adipokines are the 3T3-L1 cell line, a well-characterized 
adipocyte line from mice which can acquire an adipocyte-
like phenotype. During the differentiation process, 3T3-L1 
cells can be induced to differentiate under controlled 
laboratory conditions using a standard differentiation 
protocol and are widely accepted as a physiologically 
faithful in vitro representation of adipogenesis [11-13,39]. 

 
Our knowledge about the functions of adipose tissue is 

widening over time. Adipose tissue secretes proteins 
generally known as adipokines to signal different 
functions across the body [40-41]. Adipokines such as 
adiponectin and resistin are potential additional 
biomarkers for metabolic syndrome [17]. Adiponectin is 
an adipokine secreted exclusively from the adipocyes 
with one of its major roles in energy metabolism [42,43]. 
It stimulates fatty acids oxidation, decreases plasma 
triglycerides and increases glucose sensitivity [44]. It also 
acts as an anti-inflammatory, anti-atherogenic, and anti-
oxidative factor [45]. Lower levels of adiponectin may 
lead to metabolic syndromes like insulin resistance, 
obesity, type 2 diabetes [46,47]. Higher levels may lead to 
anorexia nervosa [48].  

 
On the other hand, resistin is a relatively new and 

poorly studied adipokine with biological properties 
opposite to adiponectin [17,44]. It is produced in the 
stromovascular fraction of adipose tissue and blood 
monocytes. Human resistin is 12.5-kDa protein, which 

contains 108 amino acids. It circulates in human blood as 
a dimeric protein linked by a disulfide bond. Resistin 
circulates in high levels in diabetic mice models, and it is 
suggested that resistin is the adipokine that links obesity 
to type 2 diabetes [50,51]. Also, resistin is an 
inflammatory marker of atherosclerosis in humans [52]. 
The adiponectin- resistin ratio has widely been suggested 
by various researchers to be an indicator of metabolic risk 
for obesity [17,44,53]. The secretion levels adipokines, 
like adiponectin and resistin, may be associated with risk 
of development of hypertension, type 2 diabetes and the 
metabolic syndrome [6,16]. 

 
In this paper, we suggest potential association of MeHg 

with adipokine profiles in 3T3-L1 cells. The exposure to 
MeHg might be influenced by other stressors which would 
be investigated in combination to observe any synergistic 
interactions of MeHg and other stressors. Pancreatic beta-
cells are sensitive to ROS and MeHg induces beta cell 
apoptosis, but 3T3-L1 cells are less characterized [16,54]. 
Management of antioxidant levels could be a useful 
treatment for human health programs. Using anti-
oxidants to counteract high exposure to MeHg would be a 
appropriated approach to population wide studies and 
treatment of diabetes [6,18]. A fuller understanding will 
facilitate the introduction of targeted diet-based 
interventions as treatments.  
 

Conclusion 

Research on the effect of contaminant exposure such 
as MeHg should supply baseline data and address the 
value of antioxidant dietary supplements as a therapeutic 
approach of dietary MeHg exposure on the function of 
adipose tissue. The roles of adipokines are numerous but 
we are focusing on the role of contaminants in energy and 
fat metabolism as they are directly related to obesity and 
metabolic syndrome. Exposure to a contaminant or 
mixture may lead to change in secretion patterns of 
adiponectin and resistin. Imbalanced ROS levels have 
been detected in WAT of type 2 diabetics or Met S. 

 
An association between mitochondrial dysfunction, 

oxidative stress and carbonylated proteins may play 
critical roles in insulin resistance. High ROS levels could 
lead to adipocyte hypertrophy, altered metabolism, and 
dysregulated adipokine secretion. Basal levels of ROS are 
required for the differentiation of preadipocytes into 
adipocyte and their normal functioning. However, 
diminished or excessive levels of ROS levels may 
contribute to WAT dysfunction following insulin 
resistance [55,56]. 
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Research is needed to develop models to determine 
the effect of a normal level of MeHg exposure on 
adipocytes. This understanding will add data to the 
debate about mercury or other contaminants and their 
role at the biochemical level in metabolic syndrome. 
Specifically, this type of research will further develop a 
model system to link specific environmental 
contaminants to metabolic syndrome and associated 
diseases [6,15].  

 
Barnes and his colleagues investigated the effect of 

inorganic mercury chloride on adipogenesis and glucose 
transport [11,12]. Vertigan, et al. showed increased VEGF 
secretion from differentiated cells due to MeHg exposure 
[13]. Their findings provide a platform for further 
studying MeHg species as a potential modulator of 
metabolic processes in adipocytes. The idea of using 
natural food in a model anti-oxidant system to study the 
mitigating effects on adipokine secretion will increase the 
possibility of a potential neutraceutical treatment options 
for insulin resistance [57]. Using a defined anti-
inflammatory compound would advance the current 
common approach of testing complex extracts and 
mixtures [15].  

 
Also, since pollutants are increasing in the 

environment, the regulatory implications of this research 
would allow for fine tuning the criteria levels for water 
and food regulations. The few studies on complex 
mixtures have suggested that both additive and 
synergistic effects occur with multi-toxicant exposure. 
From a regulatory perspective, these impacts would 
require a review and possible lowering of the acceptable 
exposed dose in a food source. Studies in a standardized 
cell culture system allows for better comparison between 
toxicants. 
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