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Abstract

Mercury (Hg) is a metal of both natural and anthropogenic origins that bioaccumulates in wildlife. Environmental risk 
assessments to arctic wildlife, such as the red fox (Vulpes vulpes), often use mercury analysis of hair due to its minimally 
invasive sampling method. The fate and transport of Hg provides refined risk assessment information. Stable carbon and 
nitrogen isotopes in hair and other tissues from 65 members of a wild, free-ranging population of red foxes in western Alaska 
were investigated to establish the trophic position for a northern red fox population in western Alaska. Hair stable isotopes 
δ13C correlated with stable isotope values from bone and muscle. Stable isotope ratios of the wild red fox are distinct from 
published farmed red fox data. Data demonstrated that hair δ15N positively correlated with hair total mercury levels. The 
western Alaska red fox consumes a diet of rodents and birds, which agrees with stable isotope data. The data establishes a 
baseline for monitoring changes in trophic level patterns as climate change impacts the red foxes’ food web.
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Introduction 

The red fox (Vulpes vulpes) is considered a generalist 
predator [1-3], whose movements are usually driven by local, 
seasonal food availability. The red fox expanded its range to 
the Arctic regions of the far north during the 20th century 
[4-6]. Found throughout Alaska, red fox are considered 
abundant on the Yukon Kuskokwim river delta [7]. Because 
of their abundance and value, red fox are ranked as the most 
important species to trappers in western Alaska and second 
most important overall statewide [8].

Red fox food sources consist of rodents, invertebrates, 
fruit, and even anthropogenic garbage in urban settings [9-
11]. Red fox survive in a variety of ecosystems from semi-
arid deserts to the [1] feeding on a wide range of prey species 
specific to their habitat [12-14]. In Alaska, the natural 
habitat provides red back voles (Myodes rutilus) and other 
microtine rodents, shrews (Sorex cinereus), wood frogs (Rana 

sylvatica), black fish (Dalia pectoralice), and birds, such as 
willow ptarmigans (Lagous lagopus) [13,15]. Historically, 
foxes were captured and farms established to produce fur for 
the retail clothing market. Over time, the farms also became 
associated with some behavioral and domestication studies 
[16]. Stable isotope analysis is a common tool used to trace 
pathways of organic matter through the food chain [17]. The 
stable isotope ratios reflect dietary sources from coastal, 
terrestrial, benthic and pelagic environments [18,19]. 
Differences in carbon stable isotope ratios (13C/12C) arise in 
the photosynthetic pathways of C3 and C4 plants [20,21]. 
In western Alaska, the native vegetation is exclusively 
composed of C3 plants [22]. The animals’ tissue isotopes 
reflect naturally occurring stable isotope values in both 
local diet and seasonal patterns [15,23]. The difference in 
carbon isotopes [24,25] can distinguish wild foods from 
processed animal kibble or human food in their diet. The 
stable nitrogen isotope (15N/14N) is used to identify food web 
structures [12,26-28]. 

https://doi.org/10.23880/act-16000181
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Besides general isotopic incorporation, stable isotope 
ratio can also discriminate between an animal’s diet and 
accumulation of nutrient values in various tissues [29-31]. 
Each tissue incorporates the nutrients from diet differently 
as each tissue is influenced by different turnover rates [32]. 
The δ15N signature is incorporated into tissues at a slower 
rate when herbivores consume a nitrogen-poor diet [33]. 
An animal’s feeding ecology also determines the uptake of 
contaminants, such as mercury [3,34-36]. 

In this study, we used stable isotopes to test the 
hypothesis that hair could be used to monitor food chain 
changes within the red foxes’ ecosystem. We additionally 
hypothesized that the stable isotopes would be correlated 
between hair, muscle and tissue. Thieszen, et al. [37] noted 
that muscle tissue infers diet one to two months prior to 
sampling and bone collagen infers past diet and increases in 
mercury. Since winter hair begins growing in August and is 
fully prime by late November or early December [12,38,39], 
contaminants like mercury, accumulated during late summer, 
would be observed. Analysis of seasonal impacts on fox 
tissues infer past diet, increases in mercury bioaccumulation 
help identify changes in the environment or feeding patterns. 
Roth and Hobson [12] reported stable isotope data for captive 
red foxes raised on a commercial pellet diet. A qualitative 
comparison, using wild foxes from western Alaska would 
add to Roth and Hobson’s foundational concept of using 
stable isotopes to monitor food webs. 

Materials and Methods

Sample Preparation 

A total of 200 red fox carcasses were donated during the 
period of November 2010 through February 2011. Trappers 
anonymously and voluntarily provided carcasses to the 
Alaska Department of Fish and Game (ADF&G) in Bethel, 
Alaska. Carcasses remained frozen and were stored outside 
at the ADF&G office (temperature was continuously below 
0°C). 

Frozen carcasses were transported to the University of 
Alaska Fairbanks (UAF) where they were stored at -20 ̊C. 
Carcasses were partially thawed and sub-samples of liver, 
muscle, and one whole kidney, femur, and rear paw with 
fur were collected into Whirl-PakTM bags and stored at -20 
̊C (liver, muscle, kidney, rear paw) and -80°C (femur). All 
samples were collected from the right side of the carcass 
using stainless steel scalpels or scissors. Only foxes with 
all five available tissues were analyzed for stable isotope 
analysis. Based on these criteria, 65 foxes were used in this 
study, 35 males and 30 females. 

Approximately 14 g of frozen liver was cut into small 

pieces (~1 cm3). The entire quadricep muscle was removed 
from the femur bone while partially frozen, and cut into small 
pieces. For dissection of cortex and medulla, kidneys were 
kept partially frozen on a clean stainless steel tray placed 
on ice. All instruments used to separate renal cortex and 
medulla (scalpels and trays) were also kept at -20 ̊C before 
use. All tissues were placed into individual pre-weighed 
Whirl-PakTM bags and lyophilized for 72 hours (Labconco 
FreeZone 4.5TM Freeze Dry System). 

Hair was collected from the right rear paw using a Wahl 
stainless steel trimmer (carbon blades) and stainless steel 
scissors. Blades were thoroughly cleaned between samples. 
Hair was placed in a 50 ml metal-free conical bottom tube and 
filled with 1% Triton X, covered, and allowed to sit for 15-30 
minutes, shaking occasionally. The Triton X was then poured 
off and the tube was filled with H2O, covered, sat for 10-15 
minutes, with occasional shaking. This process was repeated 
at least four times until all soap was gone. The hair samples 
were placed into individual pre-weighed Whirl-PakTM bags 
and lyophilized for 48 hours (Labconco FreeZone 4.5TM 
Freeze Dry System). 

Bones were cored under a fume hood while wearing 
a 3MTM particulate respirator N95. The bones were 
cored using a DremelTM glass diamond drilling bit, 1⁄4” 
(6.350mm), 663DR, drill speed #23. Each femur was drilled 
completely through the shaft in three locations to produce six 
core. Four cores were used in a similar study of THg [3], and 
the remaining 2 cores were used in this stable isotope study. 
The periosteum and any traebecular bone were removed 
using a DremelTM glass diamond taper point sander, 3/32” 
(2.381mm), #7144. The cores were stored at -20 ̊C in acid-
washed (5% HNO3) vials prior to degreasing. The degreasing 
method used is as follows: bone core samples were sonicated 
in deionized water in order to remove any debris. Next, they 
were soaked in chloroform for two 8-hour periods to remove 
any lipids, then finally rinsed with deionized water and air-
dried under a fume hood for 3 days. 

The bone collagen extraction is as follows: bone samples 
were demineralized by soaking in an HCl-H2O solution until 
they were translucent. After which they were rinsed with 
deionized water. In order to separate the collagen from other 
organic compounds and proteins, the bone samples were 
gelatinized by placing the collagen samples, with HCl-H2O 
solution (pH between 3.0 and 4.0) in a culture tube. The tube 
was heated to 70°C under a stream of nitrogen, to dissolve 
the collagen. The supernatant was lyophilized to retrieve the 
collagen after centrifugation.

Stable Isoptope Analysis

Isotope ratios are presented as stable isotope abundances 
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relative to the international standard (delta (δ) notation) in 
parts per thousand (permil (‰) 

δX = ((Rsample/Rstandard)-1) × 103 ‰

where, element X = 13C or 15N and R is the molar ratios of 
heavy to light isotope of the sample and the standard [24]. 
These isotope ratios are expressed in delta notation of per 
mil relative to the Viennna PeeDee Belemnite international 
standards for carbon, and atmospheric N for nitrogen. These 
standard values are measured using a laboratory standard 
(peptone) calibrated against several certified reference 
materials [24]. 

Between 0.1 and 0.5 mg of hair, liver, muscle, renal cortex, 
renal medulla, and bone collagen samples were placed in tin 
capsules then loaded into an autosampler. Samples were 
analyzed for stable carbon and nitrogen isotopes at the Alaska 
Stable Isotope Facility at the University of Alaska Fairbanks. 
A continuous-flow isotope ratio mass spectrometry with a 
Costech ECS4010 Elemental Analyzer (Costech Analytical 
Technologies Inc., Valencia, CA, USA) interfaced to a Finnigan 
Delta Plus XP isotope ratio mass spectrometer via the 
Conflo III interface (Thermo Fisher Scientific, Waltham, MA, 
USA) was used for analyzing. The laboratory standard was 
measured multiple times between samples to evaluate the 
accuracy and precision of analyses. Accuracy and precision 
was assessed using multiple peptone standards. Precision 
was within 0.3‰ and accuracy was within 0.1‰ for both 
δ13C and δ15N values.

Tissue turnover, Growth Rates and Lipid 
Contamination Methods used for Analysis

Analysis of the pelage (hair) cycle of the red fox has 
shown that annual molt begins in early spring, approximately 
in April, and regrowth begins in late summer. The cycle 
is complete when the fur obtains its full length and is fully 
prime in early December. Therefore, the hair collected 

in winter will be representative of a diet August through 
October [39]. Bone collagen, however, describes the lifetime 
diet of an animal [37], while muscle tissues will show a diet 
within the last two months prior to sampling [12]. Renal 
cortex and medulla, as well as the liver show the diet within 
the last week prior to sampling [12,40]. 

Lipids are typically depleted in 13C and have δ13C values 
more negative than those in carbohydrates and proteins 
within an individual organism [41]. Lipids for hair and 
bone were extracted and corrected, while muscle, liver and 
kidney were not [41,42]. The C:N ratios were analyzed to 
compare the effect of lipid extractions. A C:N ratio of around 
four (~10% lipids) is an acceptable range for terrestrial 
mammals. 

Statistical Analyses 

Histograms and normal probability plots were used 
to assess normality of the distribution of δ13C and δ15N 
isotope measurements for each tissue. Individual isotope 
measurements greater than three standard deviations 
from the mean for each tissue were identified as potential 
outliers [43]. Means and standard deviations were used to 
summarize δ13C, δ15N and C:N values for all tissues for all 
foxes, as well as separately for male and female foxes. T-tests 
were used to compare mean isotope values of males and 
females for each tissue. Paired t-tests were used to test mean 
differences in isotope values between pairs of tissues, for 
both δ13C and δ15N. Pearson’s product-moment correlation 
was used to measure and test the significance of correlations 
between isotope values in each pair of tissues, for both δ13C 
and δ15N. We used the scale established by Andale [44] to 
classify correlations as follows: High correlation: 0.5 to 1.0 
or -0.5 to 1.0, Medium correlation: 0.3 to 0.5 or -0.3 to 0.5, 
and Low correlation: 0.1 to 0.3 or -0.1 to -0.3. A significance 
level of α =.05 was used for all hypothesis tests. All analyses 
were performed using the statistical software R [45].

 Hair Mean (STD) Bone Liver Muscle Kidney Cortex Kidney Medulla

δ13Carbon -24.89 (1.08) -22.56 (0.67) -25.37 (1.34) -25.69 (1.14) -25.35 (1.21) -25.31 (1.21)

δ15Nitrogen 5.57 (1.48) 4.64 (1.47) 5.72 (1.64) 5.20 (1.53) 5.63 (1.66) 5.85 (1.53)

C:N Ratio 2.62 (0.05) 2.51 (0.04) 4.01 (0.61) 3.38 (0.31) 4.02 (0.22) 3.83 (0.30)

Table 1: Mean and standard deviation for δ13C and δ15N and C:N ratios for all red foxes (n=65).

Results

Tissue Isotope values for δ13C and δ15N and C:N 
ratios in wild foxes 

The C:N ratios (Table 1) demonstrated a ratio that 
would be expected for terrestrial mammals [41]. Table 1 

summarizes the means and standard deviations of δ13C and 
δ15N values and C:N ratios for all tissues from the sample 
of free-ranging red foxes from Bethel Alaska. There was 
no significant difference between male and female foxes. 
Histograms and normal probability plots of isotope values 
were consistent with normality for all tissues. 
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Figure 1 compares the relationship of δ13C and δ15N 
values for bone and hair. The δ15N values of the two tissues 
had similar ranges. On the other hand, the δ13C values 
differed between hair and bone. An outlier was observed in 
one fox that had isotope values outside the three-standard 
deviation range for δ13C in hair and bone [43]. This same fox 

was considerably larger and heavier (5.5 kilograms (kg) than 
the other foxes. Weight averages for all foxes were 3.85 kg, 
with males having averages of 4.06 kg, and females 3.62 kg. 
This fox was not included in the statistical analyses (Figure 
1). The C:N ratio for male and female foxes demonstrated 
ratios that would be expected for terrestrial mammals. 

Figure 1: Comparison δ13C and δ15N levels for hair and bone in western Alaska wild red foxes. One male fox outlier is circled. 
δ13Cvalues illustrate differences in carbon isotope biochemistry.

Paired t-tests indicated significant differences in the 
means for δ13C and δ15N values between pairs of tissues. 
Table 2 (δ13C) reports the mean differences and p-values for 
all tissues. For δ13C pairwise mean of differences, hair, bone 

and muscle were significantly different from kidney and liver. 
Kidney cortex and medulla were not significantly different 
from each other. 

 Hair Bone Muscle Liver Kidney Cortex Kidney Medulla
Hair ---- -2.33 0.79 0.483 0.46 0.42

  <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
 Bone ---- 3.12 2.81 2.79 2.75
   <0.0001 <0.0001 <0.0001 <0.0001
  Muscle ---- -0.311 -0.33 -0.37
    0.001 <0.0001 <0.0001
   Liver ---- -0.02 -0.05
     0.791 0.466
    Kidney Cortex ---- -0.03
      0.404

Table 2: Carbon stable isotope paired t-test among all tissues. Mean of differences (top number) / p-values (bottom number). 

For δ15N pairwise mean of differences (Table 3), hair 
was significantly different from bone and muscle. Bone was 
significantly different from all tissues. Kidney cortex and 

medulla were significantly different from all tissues except 
for hair and liver.



Advances in Clinical Toxicology5

Duffy L. Stable Carbon and Nitrogen Isotopes of A Sentinel Species, the Western Alaska Red 
Fox (Vulpes Vulpes). Adv Clin Toxicol 2020, 5(1): 000181.

Copyright©  Duffy L.

 Hair Bone Muscle Liver Kidney Cortex Kidney Medulla
Hair ---- 0.92 0.37 -0.15 -0.05 -0.27

  <0.0001 <0.0001 0.328 0.696 0.044
 Bone ---- -0.55 -1.08 -0.98 -1.2
   0.002 <0.0001 <0.0001 <0.0001
  Muscle ---- -0.52 -0.42 -0.64
    <0.0001 <0.0001 <0.0001
   Liver ---- 0.09 -0.12
     0.002 0.01
    Kidney Cortex ---- -0.21
      <0.0001

Table 3: Nitrogen stable isotope paired t-test among all tissues. Mean of differences (top number / p-values (bottom number).

 Hair Bone Muscle Liver Kidney Cortex Kidney Medulla
Hair ---- 0.423 0.819 0.673 0.709 0.692

  0.0004 <0.0001 <0.0001 <0.0001 <0.0001
 Bone ---- 0.308 0.328 0.318 0.346
   0.013 0.007 0.01 0.005
  Muscle ---- 0.838 0.913 0.904
    <0.0001 <0.0001 <0.0001
   Liver ---- 0.891 0.875
     <0.0001 <0.0001
    Kidney Cortex ---- 0.952
      <0.0001

Table 4: Carbon stable isotope correlations among all tissues. Pearson’s product-moment correlation (top number) / p-values 
(bottom number).

 Hair Bone Muscle Liver Kidney Cortex Kidney Medulla
Hair ---- 0.613 0.851 0.68 0.719 0.744

  <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
 Bone ---- 0.55 0.405 0.433 0.48
   <0.0001 <0.0001 <0.0001 <0.0001
  Muscle ---- 0.928 0.939 0.945
    <0.0001 <0.0001 <0.0001
   Liver ---- 0.988 0.975
     <0.0001 <0.0001
    Kidney Cortex ---- 0.985
      <0.0001

Table 5: Nitrogen stable isotope correlation among all tissues. Pearson’s product-moment correlation (top number) / p-values 
(bottom number). 
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Pearson’s product-moment correlation was used to 
estimate correlations in isotope measurements between pairs 
of tissues. Table 4 (δ13C) and Table 5 (δ15N) also show the p- 
values for testing significance. All p-values were significantly 
different from zero. Specifically, high correlations were 
observed for both δ13C and δ15N stable isotope measurements 
between hair and muscle, liver, kidney cortex and medulla. 
Hair and muscle correlated with liver, kidney cortex and 
medulla. Bone showed a small correlation with all tissues for 
both δ13C and δ15N stable isotope measurements. Bone is less 
likely to be useful in predicting stable isotope ratios in other 
tissues of the red fox.

Relationship of Mercury Concentration to Hair 

A correlation between δ15N values and THg 
concentrations of hair was observed for the western Alaska 
red foxes total mercury (THg) concentration in hair as 
reported by Dainowski, et al. [3]. When δ15N of hair increased, 
hair THg increased. Figure 2 shows an increasing pattern of 
hair δ15N ranging from 2 to about 7 per mil, with most foxes 
between 4.5 and 7 per mil. The Hg levels range from 0.5 ppm 
to 9 ppm with most foxes Hg concentrations between 1 and 
5 ppm.

Figure 2: δ15N versus THg of hair in free-ranging red foxes from western Alaska. THg concentrations are reported in ppm (mg/
kg) and δ15N values are reported in per mil. R2 = 0.42. Mean (std dev) of hair 5.57 (1.48), and THg 2.58 (1.96). Stable isotope 
values for hair correlate with THg levels in hair.

Farmed Foxes Versus Wild Foxes 

Roth and Hobson [12] reported a study of captive red 
foxes in which the objective was to measure diet –tissue 
isotopic fractionation in foxes raised on commercial pellet 

feed. A non-statistical, qualitative comparison is presented 
in Table 6. The red fox δ13C hair mean was -24.89 while the 
farmed fox hair was -16.10 per mil (Table 6). Muscle and 
bone tissues also differed between the two groups. Similarly, 
the δ15N means varied for both groups (5.57 vs. 8.10 per mil).

 δ13C Alaska free-
ranging foxes

δ13C Ontario commer-
cial fed farmed foxes

δ15N Alaska free-
ranging foxes

δ15N Ontario commercial 
fed farmed foxes

Bone -22.56 (0.67) ---- 4.64 (1.47) ----
Kidney Medulla (KidneyM) -25.31 (1.21) ---- 5.85 (1.53) ----

Kidney Cortex (KidneyC) -25.35 (1.21) ---- 5.63 (1.66) ----
Liver -25.37 (1.34) -18.3 5.72 (1.64) 8.2

Muscle -25.69 (1.14) -17.6 5.20 (1.53) 8.2
Hair (fur) -24.89 (1.08) -16.1 5.57 (1.48) 8.1

Table 6: Stable Isotope mean values (std dev) for tissues of Alaskan free-ranging red foxes and Southern Ontario, commercially 
fed, farmed red foxes [12]. All values are reported in parts per mil (‰).
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Discussion

The small percentage of lipid content in the fox tissues 
did not influence the δ13C and δ15N stable isotope values. 
The red fox tissues had a 1% difference in their mean values 
between lipid extracted, e.g. bone, and non-lipid extracted 
tissues, e.g. hair, for δ13C.

Potential western Alaska red fox nutrient sources include 
terrestrial, avian, aquatic, and occasionally anthropogenic 
derived foods. Plants, both C3 and C4, are significant due to 
the δ13C ratios, which differ depending on the photosynthetic 
pathway [21,46]. The ratio of 13C/12C isotopes in C3 plants 
range from approximately -24.00 to -34.00‰, while the ratio 
in C4 plants range from approximately -6.00 to -19.00‰ 
[47]. Alaska’s native vegetation is exclusively C3, such as rice, 
shrubs and grasses [22,47]. The C13 isotopes indicate that 
C3 plant eating terrestrial animals comprise the majority of 
the red fox’s diet. The red fox hair mean value δ13C of -24.89 
‰ (male and female) results from a diet high in microtines 
(Table 6). 

The farmed red fox diet is δ13C isotopically different from 
the wild Alaskan fox (Table 6). Roth and Hobson [12] reported 
the pellet diet of their farmed foxes contained up to fifty 
percent carbohydrate, resulting in an average δ13C isotope 
fractionation value lower than the Alaskan red fox whose 
diet is based on microtines eating C3 plants. For farmed fox 
δ13C isotope values ranged between-16.10 to 18.31 per mil in 
the tissues (Table 6). Corn, found in domestic animal feed, is 
a major component of the commercial rodent pellet diet and 
human diet [11,25]. 

Nitrogen stable isotope ratios vary as trophic levels 
increase [48], and between terrestrial and marine sources 
[13,24,26,27]. The increase in trophic levels can be 2.00‰ to 
4.00‰ between levels; however, this depends on the tissue 
water content [49-51]. The environment and physiological 
factors of animals (e.g. hair growth) [24,49] and wetter and 
cooler ecosystems plants would have a lower δ15N ratio 
[24,51]. 

After comparing our muscle data with Roth and 
Hobson [12], δ13C and δ15N stable isotope measurements 
illustrate that a wild diet of mainly microtines consumed 
by the free-ranging red foxes can easily be distinguished 
from the carbohydrate rich pellet diet that includes carbon 
from C4 plants. Our stable isotope demonstrates that free- 
ranging Western Alaska red fox diets vary greatly from the 
commercial fur farmed foxes from Ontario, Canada (Table 6). 
The isotope data suggests that the Alaska red foxes have a 
major diet of herbivores, such as microtones that feed on C3 
plants. Our data validates Roth and Hobson’s concept using 
stable isotope changes to monitor terrestrial mammalian 

omnivores’ food web [52].

The isotope values of the red fox’s diet items versus the 
THg concentrations found in their hair tissue implies that the 
THg may be coming through a mixed lemming/aquatic/avian 
pathway (possibly fish or other fish-eating birds) for those 
foxes with the higher mercury contents. The free-ranging red 
foxes should retain a summer signal in their hair. A summer 
seasonal effect of THg in the diet may explain the variation in 
the Hg values (Figure 2) [53]. 

Since red foxes are the second most important species 
overall in the state of Alaska, as well as among the top most 
important species to trappers in western Alaska, the different 
statistical analysis provided in this research has shown to be 
important. The stable isotope statistical analyses, as seen in 
various tissues of the Alaskan red fox, have shown the red 
fox’s dietary food source, the components of their food chain 
as well as seasons diet patterns in their changing Alaskan 
environment. In addition, the mercury analyses, as seen in 
various tissues of these same red fox’s, helped to identify not 
only bioaccumulation of mercury through season changes 
but also the accumulation of mercury through the fox’s food 
chain. Since the red fox’s movements are driven by local and 
seasonal food availability, the implications of this research 
is important in order to monitor the health of the Western 
Alaska red fox. By monitoring the health of the Alaskan red 
fox and their food chain, we can also monitor the health of 
their ecosystem, through mercury analysis, for nutritional 
value. By monitoring the red fox’s heath and the health of 
their ecosystem, we can then address various health issues 
that may be indicated in future red fox tissue analysis. In this 
way, we can make every effort to insure a healthy ecosystem 
and population of red foxes in western Alaska [54].

Conclusion

This is the first report on red fox population stable 
isotope ratios from western Alaska. The δ15N stable isotope 
ratio of hair are significantly different from bone and muscle 
tissues. The western Alaska red fox differs in trophic position 
with the farmed red fox. Stable isotope data is correlated 
with the mercury levels. Identifying the trophic position of 
red fox populations allows for ecological risk assessment 
of contaminants such as mercury as climate change and 
industrial development impacts the physical and biological 
composition of western Alaska ecosystems. 
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