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Abstract

Cyclosporine is an immunosuppressive drug that is widely used in organ transplantation and autoimmune diseases. However, 
its potential reproductive toxicity in male animals is not fully understood. This mini-review aims to provide an overview of the 
current knowledge on the reproductive toxicity of cyclosporine in male animals, focusing on its effects on spermatogenesis, 
sperm quality, and fertility. A literature search was conducted using PubMed, Google Scholar, and other databases to identify 
relevant studies. Studies have shown that cyclosporine can have various adverse effects on spermatogenesis in male animals, 
including decreased sperm production, impaired sperm motility, and increased sperm abnormalities. Cyclosporine can also 
affect sperm quality by reducing sperm concentration, viability, and DNA integrity. These effects may result in decreased 
fertility in male animals. The available evidence suggests that cyclosporine has reproductive toxic effects in male animals. 
Further research is needed to fully elucidate the mechanisms of action and to develop strategies to mitigate these effects.
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Abbreviations: GnRH: Gonadotropin-Releasing 
Hormone; LH: Luteinizing Hormone; HPG: Hypothalamus-
Pituitary-Gonadal; FSH: Follicle-Stimulating Hormone; 
ROS: Reactive Oxygen Species; MAPK: Mitogen-Activated 
Protein Kinase; STAT: Signal Transducer and Activator of 
Transcription.

Introduction

Cyclosporine is a potent immunosuppressive drug 
used to prevent rejection in organ transplantation, treat 
autoimmune diseases such as rheumatoid arthritis and 
psoriasis, and manage severe allergic reactions [1]. Its 
discovery revolutionized organ transplantation, significantly 
improving patient outcomes. However, concerns have 
emerged regarding cyclosporine’s potential reproductive 
effects. This review aims to summarize the current knowledge 

on the reproductive effects of cyclosporine in male animals.

Evidence from Research from Animal studies has shown 
that cyclosporine inhibits spermatogenesis, reducing sperm 
count and motility [2-4]. In humans, cyclosporine therapy 
has been associated with azoospermia (absence of sperm) 
and decreased sperm quality [5,6]. Cyclosporine can disrupt 
the menstrual cycle, causing irregular periods or amenorrhea 
(absence of periods) [7]. It may also damage ovarian follicles, 
leading to premature ovarian failure and infertility.

Cyclosporine exerts its reproductive toxicity primarily 
through its effects on the hypothalamus-pituitary-gonadal 
(HPG) axis [4,8]. It inhibits the release of gonadotropin-
releasing hormone (GnRH) from the hypothalamus, which in 
turn suppresses the secretion of luteinizing hormone (LH) 
and follicle-stimulating hormone (FSH) from the pituitary 
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gland [4]. As a result, testosterone production by the testes 
is decreased [9]. In addition to its effects on the HPG axis, 
Cyclosporine has also been shown to directly affect testicular 
function [10]. It can induce apoptosis (programmed cell 
death) in Leydig cells, which are responsible for testosterone 
production Drobnis, et al. Cyclosporine can also disrupt 
spermatogenesis, leading to reduced sperm count and 
motility [4]. Cyclosporine is known to inhibit calcineurin, 
a key enzyme involved in immune cell signaling [11]. 
Calcineurin inhibition can disrupt cellular processes in the 
testes, leading to impaired spermatogenesis and sperm 
function [12].

Cyclosporine and Male Reproductive System

Cyclosporine is primarily metabolized by cytochrome 
P450 enzymes, particularly CYP3A4, in the liver [13]. 
The main metabolite is M17 (AMO1), which is further 
metabolized to M21 (AMO2) [13]. Both M17 and M21 have 
immunosuppressive activity, but to a lesser extent than 
cyclosporine. Studies have shown that cyclosporine and 
its metabolites distribute to various tissues and organs, 
including the male reproductive system [3,14]. In the testes, 
cyclosporine concentrates in the seminiferous tubules, 
where spermatogenesis occurs [15]. It also accumulates in 
the epididymis and seminal vesicles.

Cyclosporine has been shown to inhibit spermatogenesis, 
the process of sperm production. Studies have demonstrated 
a dose-dependent decrease in sperm count and seminiferous 
tubule diameter in men treated with cyclosporine [16,17]. This 
inhibition is believed to occur through various mechanisms, 
including: Inhibition of testosterone synthesis, Induction of 
oxidative stress, and Alteration of Sertoli cell function [4]. In 
addition to impaired spermatogenesis, cyclosporine can also 
affect sperm morphology and motility [4]. Although, Men 
treated with cyclosporine have been found not to have an 
incidence of abnormal sperm quality [18].

Cyclosporine inhibits the synthesis of testosterone by 
Leydig cells [19,20]. This effect is dose-dependent, with 
higher doses leading to more pronounced suppression. The 
reduced testosterone levels can result in hypogonadism, 
a condition characterized by low testosterone levels and 
its associated symptoms, such as decreased libido, erectile 
dysfunction, and infertility [4,21]. Cyclosporine disrupts the 
steroidogenesis pathway in Leydig cells, which is responsible 
for the synthesis of testosterone [3,10]. It inhibits the activity 
of enzymes involved in the production of precursors to 
testosterone, such as cholesterol and pregnenolone [4]. This 
disruption leads to a decline in testosterone production and 
an accumulation of intermediates in the steroidogenesis 
pathway. In addition to reducing testosterone production and 
impairing steroidogenesis, cyclosporine has been associated 

with other effects on Leydig cells, including: Decreased 
cell viability, Alterations in gene expression and Reduced 
responsiveness to luteinizing hormone (LH), the hormone 
that stimulates testosterone production.

Animal Studies on Cyclosporine’s 
Reproductive Toxicity

Studies in rats and mice have demonstrated that 
cyclosporine administration leads to dose-dependent 
alterations in spermatogenesis [4,10,22,23]. High doses of 
cyclosporine (e.g., 50-100 mg/kg/day) result in significant 
reductions in sperm count, motility, and normal morphology 
[24,25]. These effects are attributed to cyclosporine’s 
inhibition of spermatid maturation and Sertoli cell function. 
Animal studies have also explored the impact of cyclosporine 
on fertility and reproductive parameters [3]. Administration 
of cyclosporine has been shown to decrease fertility rates 
in male rodents Oyovwi, et al. [26,27]. This is associated 
with impaired sperm quality and reduced sperm transport. 
Additionally, cyclosporine can alter hormone levels (e.g., 
testosterone, luteinizing hormone) involved in reproductive 
function [28-30]. Beyond its effects on spermatogenesis and 
fertility, cyclosporine has been linked to other reproductive 
abnormalities in rodents. These include testicular atrophy, 
decreased libido, and alterations in epididymal sperm 
maturation [4]. The mechanisms underlying these effects 
are not fully understood but may involve oxidative stress, 
inflammation, impaired androgenic hormones and enzymes 
and immune dysregulation [3,4,31].
 

Mechanism of Cyclosporine-Induced 
reproductive Toxicity

Immunosuppressive Effects

Cyclosporine primarily targets T lymphocytes, 
inhibiting their activation and proliferation [32]. This 
immunosuppressive action can disrupt the immune 
tolerance required for successful reproduction. It may impair 
the development of regulatory immune cells, leading to an 
imbalance between pro- and anti-inflammatory responses. 
Notably, Cyclosporine exerts its immunosuppressive action 
by inhibiting calcineurin, a phosphatase that plays a crucial 
role in T-cell activation [33-36]. By blocking calcineurin, 
cyclosporine suppresses the production of interleukin-2 
(IL-2), a cytokine essential for T-cell proliferation and 
differentiation [37]. This immunosuppressive effect has 
implications for reproductive function.

Oxidative Stress

Oxidative stress occurs when the production of reactive 
oxygen species (ROS) exceeds the body’s antioxidant 
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defenses. Cyclosporine increases the production of reactive 
oxygen species (ROS) in the reproductive organs [38,39]. 
Cyclosporine can impair mitochondrial function, leading to 
increased ROS production [40,41]. Cyclosporine activates 
NADPH oxidase, an enzyme that generates ROS in immune 
cells [42,43]. Excessive ROS can damage cellular components, 
including DNA, proteins, and lipids [44]. This oxidative 
stress can impair gamete function, embryo development, 
and placental integrity [45,46]. Cyclosporine can reduce the 
activity of antioxidant enzymes, such as glutathione peroxidase 
and superoxide dismutase, making cells more susceptible 
to oxidative damage [4,47]. Oxidative stress can damage 
sperm, oocytes, and reproductive tissues [4]. In male rats, 
cyclosporine-induced oxidative stress has been associated 
with decreased sperm motility, morphology, and viability [4].

Inflammatory Responses

Cyclosporine triggers inflammatory responses by 
activating pro-inflammatory cytokines and suppressing 
anti-inflammatory mediators [48]. Chronic inflammation 
in the reproductive organs can damage tissues, disrupt 
hormonal balance, and inhibit reproductive processes 
[49]. Cyclosporine inhibits the nuclear factor kappa B (NF-
κB), a transcription factor that regulates the expression 
of pro-inflammatory cytokines [50,51]. By inhibiting NF-
κB, cyclosporine promotes the release of inflammatory 
mediators. Cyclosporine activates mitogen-activated 
protein kinase (MAPK) pathways, which are involved in the 
production of inflammatory cytokines and chemokines [51]. 
Cyclosporine also activates signal transducer and activator of 
transcription (STAT) proteins, which regulate the expression 
of genes involved in inflammation and immune responses 
[52]. Cyclosporine treatment increases the levels of pro-
inflammatory cytokines such as tumor necrosis factor-alpha 
(TNF-α), interleukin-1β (IL-1β), and interferon-gamma 
(IFN-γ) [53]. Cyclosporine also stimulates the production 
of chemokines, which attract immune cells to the site of 
inflammation [54]. Cyclosporine-induced inflammation 
is associated with increased production of ROS, which can 
damage cellular components and contribute to oxidative 
stress [4]. Cyclosporine-induced inflammation leads to 
testicular damage, including germ cell apoptosis, Leydig cell 
dysfunction, and impaired spermatogenesis [4]. Cyclosporine 
has been linked to ovarian toxicity, including follicular 
atresia, disruption of ovulation, and reduced fertility [55]. 
More so, Cyclosporine treatment can cause endometrial 
inflammation, which may interfere with implantation and 
pregnancy maintenance [56].

Hormonal Imbalances

Cyclosporine can interfere with the hypothalamic-
pituitary-gonadal axis, leading to hormonal imbalances 

[4]. It may suppress the release of gonadotropins (LH and 
FSH), which are essential for fertility [3]. Additionally, 
it can alter the production of sex hormones (estrogen, 
progesterone, and testosterone), affecting fertility [3,57]. 
In male rats, cyclosporine has been shown to inhibit the 
synthesis of testosterone by Leydig cells in the testes [16]. 
This leads to decreased serum testosterone levels, resulting 
in impaired spermatogenesis and reduced sperm counts 
[3,4]. Cyclosporine can affect the pituitary-gonadal axis, 
which regulates hormone production [58,59]. It has been 
found to inhibit the hypothalamic hypophyseal gonadal axis 
in transplant patients Watkins PB, et al. [60] which may alter 
the release of gonadotropin-releasing hormone (GnRH) from 
the hypothalamus, leading to decreased LH and FSH secretion 
from the pituitary gland. This disruption of the axis further 
contributes to gonadal hormone imbalances. Cyclosporine 
has been shown to interfere with steroidogenesis, the 
process of hormone production in the gonads [3]. It inhibits 
the activity of key enzymes involved in steroid synthesis, such 
as cytochrome P450 enzymes [61]. This impairment can lead 
to decreased production of testosterone, estrogen, and other 
sex hormones. Cyclosporine’s immunosuppressive effects 
can also contribute to reproductive toxicity [4]. It suppresses 
the immune system, which can lead to inflammation and 
damage to reproductive tissues. This inflammation can 
disrupt hormone production and impair fertility [56]. In 
addition to hormonal imbalances, cyclosporine has been 
linked to other mechanisms of reproductive toxicity, such 
as oxidative stress, mitochondrial dysfunction, and changes 
in gene expression [62-64]. These mechanisms can further 
contribute to impaired spermatogenesis, oogenesis, and 
fertility.

Mitochondrial Dysfunction

Mitochondria are the energy powerhouses of cells and 
play a crucial role in spermatogenesis. Cyclosporine has been 
shown to impair mitochondrial function in reproductive 
tissues [63]. Mitochondria are responsible for energy 
production and play a crucial role in gamete maturation, 
fertilization, and embryo development [65]. Mitochondrial 
dysfunction can lead to reduced ATP levels, and oxidative 
stress .ATP depletion and oxidative stress impair sperm 
maturation and motility. Mitochondrial damage triggers 
apoptotic pathways in developing sperm. Oxidative stress 
damages sperm DNA, compromising fertility.

Conclusion

Cyclosporine exhibits reproductive toxicity in male 
animals, primarily affecting testicular function, sexual 
behavior, and the prostate gland. These effects are likely 
mediated by the inhibition of steroidogenesis, alterations in 
hormonal balance, and oxidative stress. Further research is 
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needed to fully understand the mechanisms of cyclosporine’s 
reproductive toxicity and to develop strategies to mitigate its 
adverse effects.
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