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Abstract

It is now well-known that many elements of the periodic table find a way into our bodies and have the potential for disturbing 
the delicate homeostasis (balance) of body chemistry. Nevertheless, in spite of the volume of research published in this area, 
only vague suppositions result concerning any involvements and little progress has been made concerning human health or 
addressing the preponderance of the innumerable epidemics that now are evident. This results from the inability for statistical 
analyses to be sufficiently precise to pinpoint specific causes. As a result, a simpler analysis is presented herein based on the 
premise that environmental chemical epidemics can only arise from an increased change. As a result, global diets and life-
styles have been examined in detail to establish items of change. Such a needed criteria in the recent decades poses strict 
requirements eliminating most candidates. Two areas of rapid growth in life-style changes clearly are evident and involve 
the diet of fish (sushi) (high methyl mercury) and the increase in medical vaccines (aluminum hydroxide). It is apparent that 
people now live never knowing whether they are at risk from these due to genetic susceptibilities. This is especially important 
for women of child-bearing years, where a fetus is always at high toxic risk levels. As a result, the availability of general 
population testing now is desperately needed especially for the neurotoxins, Hg, Al, As, and Pb, all alien species to the body 
together with Se that appears to be the body’s natural healthy chelator.  
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 Introduction

The human body is a remarkable example of excellence 
in design. It displays automatic self-sufficiency, survival 
maintenance and repair. Unfortunately, we humans 
casually accept this, generally think very little of it, until it 
malfunctions. Then we more fully appreciate these built-
in capabilities, but soon continue our lives fully hoping 
that this finely tuned mechanism will continue unchecked 
for an extended longevity. Various epidemics of illnesses 
have always arisen over the centuries, occur naturally, 

are often unexpected and in the past have been caused by 
some modified viral form. Historically, this has always been 
a factor of life and accepted as a hazard. However, times 
now appear to differ, and some current concerns that are 
at epidemic levels are no longer only viral but appear to 
center more on environmental causes, and for which the 
body has no response. This has initiated necessary new 
conjectures by the medical community that previously often 
had known treatments, either a vaccine or a medication to 
control or cure such an event. Now, with no understanding 
in many cases, the introduction of environmental aspects in 
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the modern age poses problems with impossible long lists 
of potential causes. It would appear to be a very difficult if 
not an impossible task to unravel any single item or group 
for explanations. This is partially true, but if the cause 
produces an epidemic this introduces innumerable required 
conditions that are necessary and begins to eliminate many 
potential suggestions. The medical literature is now ripe with 
such exercises and has considerably reduced the options. 
Additionally with neurological epidemics, the possibilities 
are even more restrictive, as the brain itself has to be 
affected. Such epidemics if not common in the past also need 
the basic factor of a needed change. As a result, although we 
now live in the realm of genetic explanations, our genes are 
not apt to suddenly change drastically. As a result, genetic 
explanations are necessarily not a primary but have to be a 
secondary component if involved, possibly due to epigenetic 
changes that are now being suggested as moderating genetic 
susceptibilities [1]. This paper concerns environmentally 
induced epidemics that have arisen, are global, and have 
become apparent in recent decades. A generally accepted 
consensus now is that these appear connected to changes 
in life-style that have occurred in modern-day living. As a 
result, partly based on such concerns, the field of medicine 
has turned more aggressively to a better understanding 
of body chemistry, its balances and the nature of possible 
changes. This has been facilitated by advances in analytical 
ability such that in recent years it has become possible 
to monitor numerous components of the human body 
through analysis of its measurable components. This has 
resulted in an overwhelming wealth of publications that for 
medicine introduces the further difficult task of analysis. If 
anything, it has illustrated more clearly how every human is 
different [2]. As a result, even with extensive statistical aid, 
analyses become limited in value due to the array of variable 
parameters and the necessary variations introduced in 
any collected data. The dilemma is that although it would 
seem obvious that if a large sample of a control group are 
compared to a group that has a certain illness, the differences 
should clearly imply a role from any apparent observed 
correlations. The problem is that the control sample may not 
be a truly rigid constant representative group in that its body 
chemistry can constantly vary depending on behavior and 
many other factors. This is true for the test case group also. 
It is hoped that large sampling will dilute and buffer such 
differences but this does not appear to be the case. The data 
needs to have a more significant degree of precision for a 
rigorous solution [3]. As a result, although hundreds of such 
analyses have been published relating to toxic substances 
and enumerable illnesses, although certain groups of 
correlations have appeared possible, analyses are always 
left with non-specific conclusions and suppositions. Even 
so, such analyses are continuing today further examining 
multiple illnesses to no avail [4-9]. Moreover, it is interesting 
that none of these studies appear to be repeated to gain any 

level of validation. No scientific rigorous singular solutions 
are possible under such circumstances. I know this from 
personal experience in science when one of my apparently 
correct statistical fit to a large body of combustion data was 
finally shown to be in error due to such minor variations 
in the input data [10-12]. In other words, medical analysis 
if to be meaningful has to turn to a different approach. The 
continuing collection of data with little hope of meaningful 
analysis may be of some interest but is not worthwhile. A 
most recent analysis of blood plasma in Tunisian children 
with autism monitored 33 chemical elements and although 
an impressive effort only shows all to be present at some 
level [13]. An alternate common-sense aspect not yet in 
extensive practice is to simply look for changes that have 
occurred in the world. Are there geographic or life-style 
factors that fit into this required time slot and occur globally? 
This paper emphasizes such an approach concerning such an 
area that has been quite extensively studied but previously 
not been open to such a simple concept. A more scientific 
approach now is presented. What has emerged so far in 
previous research is a new interest concerning the inorganic 
chemistry of the body. Initial analyses of the generally used 
biomarkers were surprised to find a large array of elemental 
compounds in the body, especially many that had no 
biological roles. These now have become suspect due to their 
natures and ready presence in everyone. If nothing else, the 
many studies with humans and animals now have indicated 
a potentially important role for the inorganic elemental 
materials. Also, that the delicate homeostasis (balance) of the 
elements in the body can be easily disrupted by some illness. 
The question addressed in the present study is whether 
these elements can be aggravators capable of playing 
major roles as inflammatory sources. Out of the myriad of 
medical publications concerning humans or animals is their 
now sufficient evidence to highlight any single element or 
group that has changed significantly? Moreover, are such 
consequences in the body quite general and form a basis not 
only for being a cause in a single but for several disorders?.

The Significant Elements Found in the Blood 
and those Alien to the Human Body: The 
Basic Value of Large General Surveys

Partly as a result of the ICP-MS (Inductively Coupled 
Plasma Mass Spectrometer), most of the metal elements in 
the periodic table can be readily monitored to very minimal 
levels. Blood is one useful biomonitor for humans and 
analyses of all the metals present down to low levels are 
available in a vast array of published surveys from around the 
world. Some appearing in recent years that are studies solely 
sampling general populations to observe their distributions 
and averages have widened the number of elements 
measured now up to 45 or even 52 elements [14,15]. Since 
the 1960’s, the US in its National NHANES program also has 
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monitored about 5000 people/year and included coverage of 
about 14 of the trace elements in their blood or urine samples 
[16]. Human biology now is well studied and the important 
elements required as essential nutrients are well defined 
having either major or minor roles [17]. As listed in Table 
1, 8 elements are basic to the body’s requirements and are 
present in blood at significant levels on a gm or mg/L level.

Required Elements Alien Elements

Major (mg/L) Minor 
(µg/L) (µg/L) (µg/L)

Ca 55 CrIII < 2 Ag < 1 Hg ≤ 9
Cu 1.5 Co < 1 Al ≤ 6? Pb ≤ 50
Fe 1 Mn ≤ 15 As ≤ 12 Rb ≤ 2.5 mg/L

K 170 Mo < 3 Ba < 7 * Sb ≤ 3
Li 7 Ni < 1.5 Be < 1 Sc ≤ 1

Mg 50 Se 240 Bi < 1* Sn ≤ 5
Na 3300 Cd ≤ 2 Sr < 35*

Zn 10 Ce ≤ 2 Ti ≤ 1*
Cs ≤ 3 Tl ≤ 1
Ga < 1 V ≤ 0.4

Ge < 10*

Table 1: Approximate suggested reference values (RV95) for 
health of trace elements monitored in human adult blood 
samples.
a Preliminary set of values drawn from several references 
[18-22] and numerous other surveys. They will vary country 
to country and are still being established. 
*Values can be variable and larger at times depending on 
location/population, and other factors such as dialysis, 
vaccines, prosthetic devices (Al), therapeutics (Bi), industry 
(Ge), and prosthetics (Ti). Sr is generally significant due to its 
chemical similarity and association to Ca. Value uncertain at 
present due to the introduction of Al as the major adjuvant 
in vaccines. 
Al, As, Hg, Mn, Pb, Se and Tl are the known major neurotoxins. 
From an evolutionary point of view this Table is quite 
remarkable. It appears as a necessary measured recipe for 
life.

The ASTDR US Agency for toxic substances and disease 
registry [23] now has accepted responsibility for releasing 
detailed toxicological and environmental reports that are 
freely available on the Web. They now include 26 metal 
elements and generally are the most current reviews. 
They generally supersede earlier reports available in the 
World Health Organization’s EHC Monograph Reports 
(Environmental Health Criteria), or their similar IPCS, 
INCHEM, and CICAD reports on chemical safety [24], which 

do still include valuable extensions to include Pt, Pd, and Ti 
elements and do actually have more recent dated reports 
for Hg, Ag, Sr and Tl. Six other elements are listed in Table 
1 as being essential, playing various minor roles in the 
body. Although in several cases these can be toxic (Cr if in 
its hexavalent form), they are minor and are required only 
in µg/L amounts. Two neurotoxins, Mn and Se, important to 
the body do fall in this category. As will be seen, Se is now 
becoming established as a very essential element from this 
list. It is interesting that the body utilizes only elements 
from the initial part of the periodic table and the seven later 
elements of the first row of transition elements. Any possible 
minor roles for As and V still remains unclear. Mo at atomic 
number 42 is the heaviest element required. Ones lighter 
than this, that seem to have been overlooked in the body’s 
design are namely Be, Al, Sc, Ti, V, Ga, Ge, Rb, Sr, Y, Zr, and Nb 
that play no roles. Some of these are toxins but only at more 
elevated levels. Together with Hg, Pb and Tl, these are listed 
in Table 1 as Alien elements, all found in the body but serving 
no purpose. Due to their neurotoxic access to the brain, and 
also having basic body toxicity Al, As, Hg, Mn, Pb, Se and Tl 
gain in importance. With the exception of thallium, their 
concentrations generally are a little larger than the other 
non-essential alien elements. Thallium, generally still rare 
in most environments is not widely encountered, existing 
mainly in specific geographical locations. Surprisingly, as 
noted in the surveys, most of these non-essential elements 
of the periodic table do creep into most diets. What is more 
surprising is that the chemicals in the body are in a delicate 
balance (homeostasis). The introduction of only traces of a 
toxin, a biological organism or even stress can disturb this 
balance and induce serious illnesses. Several elements, such 
as Ba, Rb, Sr, Sb, and Sn can be present at low levels and are 
tolerated by the body. The possible elevated levels for Rb, 
Sr and Ba generally arise from their chemical connection 
and similarity to the other alkali or alkaline earths. A recent 
inventory of global anthropogenic atmospheric emissions 
listed 12 typical hazardous trace elements, all listed in Table 
1 and all found present in the human body [25].

Several countries have published blood survey data 
indicating their approximate general baseline values 
observed for their citizens. There are many other such studies 
but these often limit the measures to selected combinations 
of elements such as Pb, Cd and Hg, due to their ever presence 
and considered importance. Such survey results are generally 
presented in statistical form, the frequency distribution 
often being portrayed by listing values that encompass the 
10, 25, 50, 75, 90 and 95% of the population tested. From 
this, an average value normally is acquired and occasionally 
a maximum value quoted. They are rarely shown pictorially. 
However, if so produced, as here in Figures 1-4, the nature of 
their distributions is more readily apparent and the variations 
and magnitudes more obvious. The cases illustrated, namely 
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for As, Cd, Cu, Hg, Mn, Pb, Se, and Zn, represent data from 
various countries. Magnitudes span a range of mg/L (zinc 
and copper), selenium (< 300 µg/L), whereas the other 
5 for Cd to Pb and are on lower scales of 0-60 µg/L. These 
magnitudes are interesting in themselves and show several 
generalities immediately. Firstly, differences and similarities 
can exist between nations, distributions can have similar 
shapes and average values can vary globally. Levels of Cu, Zn 

and Se can have similar distribution shapes with differing 
averages. Mn appears quite tightly controlled by the body. 
The other 4 minor species, As, Cd, Pb and Hg show differing 
averages, similar shapes but obviously are geographically 
affected. Consequently, although humans are all genetically 
different, there is an obvious underlying similarity of body 
chemistry even for the alien elements Figure 1.

Figure 1a, b: Survey distributions of blood testing for Zn and Cu. [26] red, Italy; [27] blue, France; [28] green, China; [20] 
purple, Brazil.

Figure 2c, d: Survey distributions of blood testing for Se and Pb. [26] red, Italy; [20] purple, Brazil, [29] black, Finland; [30] …. 
USA, [31], heavy dash-dot Norway; [32] light dash line, Korea.

Figure 3e, f: Survey distributions of blood testing for Mn and As. [26] red, Italy; [27] blue, France; [28] green, China; [20] 
purple, Brazil, [29] black, Finland; [30] …... USA.
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Figure 4g, h: Survey distributions of blood testing for Hg and Cd. [27] blue, France; [28] green, China; [20] purple, Brazil, [29] 
black, Finland; [32] … Korea, [33] dash-dot, USA.

Elements that May be Introducing Risk: 
Survey Implications 

As a result of many such global surveys it is possible to 
begin to assess which elements may possibly be posing risks 
to health. It is not unreasonable to assume that those elements 
essential for life are managed effectively and automatically 
by the body. Any fault or disruption with them will not 
be long in becoming evident and generally be effectively 
diagnosed and corrected. Over the years, toxicity limits have 
been established for most of the elements from human and 
animal studies and values obtained that correspond to levels 
where symptoms affecting the body become apparent, the 
so-called NOAEL and LOAEL, no or lowest observed adverse 
effects levels. These have formed the basis for establishing 
minimum risk levels (MRL), Biomonitoring values that can 
be suggested by taking a built-in safety buffer of possibly 10- 
to 100-fold lower margin than the NOAEL value if possible, 
and this has become a useful medical guide. However, on 
several distributions it has become noted that the fall–off 
region can vary to different extents and readily stretch even 
beyond a 95% cut off of the sample and that an MRL value did 
not adequately reflect risk in such slow fall-off distributions. 
This was becoming commonly noted particularly for mercury 
where a large part of current survey distributions can extend 
well beyond the US MRL suggestion [34]. 

As a result, the actual value encompassing 95% of the 
survey now is being accepted as a better risk assessment 
magnitude, the so-called Reference Value (RV95) and is 
becoming accepted as a better diagnostic value [18-22,35]. 
Such values are listed already in Table 1. However, this is still 
based on the accepted premise that if levels are sufficiently 
low, they can be accepted. This of course results from the 
fact that we have been living with nature quite well for 
many centuries indicating that the human body appears to 
tolerate many elements at levels that occur naturally. None 

the less, such a set of benchmark values remains invaluable 
and a basic guide for doctors. Surveys arise by sampling 
normally labeled healthy people. As a result, the field of 
toxicity is not an exact science and some of its assumptions 
now are being questioned, especially as humans are living 
longer and some elements found in the body may not have 
been in common use for long. However, in a basic manner 
this remains irrelevant in the present discussion. Changes 
are required and if a noted risk factor is relevant to an 
epidemic it has to satisfy various conditions such as having 
global availability. This and other requirements become 
very restrictive and extensively minimize considerations 
of periodic table options. Additionally, metals heavier than 
Mo do become suspect automatically as alien species in the 
body, but are also less encountered in most diets. Other than 
the aspect of slow accumulation, which may be relevant to 
diseases of the elderly, the question of higher exposures is 
obvious. However, without symptoms there is always an 
assumption of health. Levels falling within the RV95 values of 
these figures are automatically acceptable. This is apparent 
in the distributions illustrated in Figs.1 -4. For any of the 
toxic elements other than Mn and Se needed by the body, all 
distributions are characterized by a slow fall-off to outlier 
cases occurring well beyond even the 98% of the distribution, 
often in some cases to higher values. Until recently there 
has been little interest in such extended values that can be 
creeping towards levels of toxicity. For elements required by 
the body the risk assessment for health differs in needing 
to examine extremes, essentiality and toxicity [36]. There 
are now models relating dose-response aspects to assess 
risk [37]. The problem becomes different though for alien 
elements when only the upper limit is of interest. As a result, 
for most of these, the important data mainly come from 
survey levels, human observations and animal studies. Lead 
which appears to be the most toxic alien element has been 
very extensively studied. Human and animal studies note 
cognitive decline at even low levels, leading to the conclusion 
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that a zero tolerance is most appropriate implying no model 
is needed [38-40]. Tests on rats now confirm oxidative 
stress and neurodegeneration also with low doses of methyl 
mercury [41] and arsenic exposure also indicates neural 
impairment at low levels [42]. Surprisingly, even strontium 
thought to be benign in the body now has been reported 
to produce oxidative stress in pregnant women [43]. Low 
concentrations of these trace toxic alien species in mixtures 
(As, Cd, Hg, Pb) are reported to have deleterious effects on 
mice and rats and moderate their bodily distributions [44-46]. 
Pregnancies are of particular concern as safe levels still need 
establishing [47]. Consequently, even though supposedly 
safe blood levels are being suggested, these are only a useful 
rough guide for medical consultations and remain the best 
realistic supposition. It is the nature of variation between 
humans that remains complex and additionally the variation 
of genetic susceptibilities that is apparent in the data. 
Nevertheless, the simple conclusion that can be drawn from 
all toxicity studies is that less is recommended. 

Assessment of Diets and Which Alien 
Elements are More Commonly Encountered? 

The assessment of what foods humans need to eat for 
good health arose from the advance of analytical analysis 
only about 50 years ago. Before that our diet was fixed by 
habit, culture and experience. A large body of data has 
been analyzed since, assessing the needed components 
and recommendations derived for bodily daily intake levels 
[48]. With such a baseline set of values, countries have been 
able to better gauge the adequacy of diets, and manage and 
control their general food supplies now in a more meaningful 
way. The detailed analysis of the elements in food examines 
not only sufficiency in the diet but can highlight dangerous 
possible health aspects. As a result, basic diets are now 
analyzed in chemical detail in many countries of the world. 
One outcome of this, is also the monitoring of the alien 
elements that we unknowingly ingest. The major importance 
of course is to ensure adequacy in required elements and 
bring this into balance by managing their sources. Such 
dietary reports are important and available, ones are for 
the US [49], UK [50], France [51], Germany [52], China [53], 
Cambodia [54], Sub-Sahara Africa [55,56], Brazil [57], and 
Norway [58]. Their ranges of values are seen to vary to some 
degree on comparing different countries. However general 
magnitudes are consistent. The UK study had the important 
conclusion that, over the recent period of 30 years, dietary 
changes were minor in the UK. In fact, in solely examining 
most foods, there appears to be little significant global 
change in eating in these surveys consistent with explaining 
any epidemic. However, this assessment now is in error due 
to life-style changes that have occurred and have not yet been 
fully included. One significant addition to diet, overlooked 
in all these previous reports, is the eating of fish, Japanese 

sushi style. Although around for several decades, sushi-style 
of eating fish began in the US as a rather limited exotic food. 
Then as people changed to consider a healthier lifestyle that 
included dieting, it rapidly became accepted due to its high 
nutrition, low-fat and calorie character. It began to flourish 
in the 90’s and particularly in the US began to experience 
exponential growth now witnessed globally [59,60].

 The Japanese government recently estimated that 
outside of Japan there are more than 20,000 Japanese 
restaurants globally. The US has at least 4000 and now almost 
every grocery food store carries a sushi display. Fish are now 
a major source of alien mercury in its most toxic organic 
form, methyl mercury. It has also re-introduced unexpected 
mercury poisoning cases for the medical profession to 
diagnose among the general public consuming high fish 
diets. The World Health Organization had long realized 
the potential risk factor of mercury in fish consumption 
having completed a risk analysis for this in 2006 [61]. They 
established a recommended daily intake, however noting 
then that this left 6% of women of child-bearing age above 
the then accepted EPA blood level recommendation of ≤ 5.8 
µg/L. This value has been accepted ever since but now is 
clearly regarded as too high a level extensively exceeded and 
a missing factor in people’s diets. Normal diets generally are 
sufficient to satisfy the body needs for the major and minor 
elements in Table 1, and it is rare to ingest these to levels of 
excess, the body normally has automatic controls on its major 
elemental needs. This is true both for food and water supplies 
even though some may show toxicity especially from highly 
contaminated water supplies. Toxicity also can be complex 
in that it depends on the chemical form of an element, 
particularly its water solubility, and also its valence state. For 
example, the ore of mercury is cinnabar, HgS, totally insoluble 
in water and as a result non-toxic. Similarly, chromium has 
two major valences, trivalent (III, non-toxic and required 
by the body) and hexavalent (VI), for example chromate 
compounds that are soluble and highly toxic. Water sources 
become a consideration due to solubility and the nature of 
their source. Surface supplies appear to have less problems 
for potable water than from water wells, but major impurities 
of As, Mn, Pb or U tend to be a regional geographic problem 
now quite widespread. The World Health Organization 
(WHO) realizes this problem and currently is reevaluating 
guidelines for drinking water [62]. Domestic filtering of 
drinking water is helping to reduce this component of diet in 
more advanced cultures. However, certain countries, such as 
parts of India and Bangladesh, are geographically unfortunate 
in having water wells now very rich in arsenic to the point 
that drinking water alone causes many cancer deaths per 
year [63-66]. The US has less of such a problem, now being 
able to suggest lowering its arsenic National water standard 
to <10 µg/L [67]. Even so, there do remain sections of the 
South Western United States where many wells remain in 
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excess [68]. Modern day industrialization and urbanization 
can also lead to groundwater contamination certainly of the 
heavy metals as witnessed in the Pearl River Delta region of 
China [69]. The Flint Michigan region of the US accidently 
raised Pb levels in its drinking water to dangerous levels, 
but it also remains a problem in other areas of the US and 
certainly in Bangladesh where spice adulteration with lead 
also is a problem of concern [70,71]. As a result, water 
problems are ever present and non-negligible regarding 
illnesses. For example, currently Mo and Pb are raising 
concerns in various US counties [72,73] and MN in water 
is suspected as having effects on children [74-76]. Even 
strontium levels have been addressed recently in the water 
of some Indian villages [77]. Consequently, although water 
cannot be casually disregarded, its quality is very variable. 
Also, although the alien elements are ingested to varying 
levels, global sources will generally remain more from food 
than from water. An interesting observation is that food and 
water supplies in normal diets are fortunately not often both 
rich in the same element. Also, it has to be remembered that 
some elements can be important even in minor quantities 
such as the need for vitamin B12 with its molecule having 
simply a single necessary Co atom at the center of a very 
complex structure. This raises the additional question of 
whether quantity can also be an important aspect in some 
disease assessments. Most humans live most of their lives 
eating their conventional diet and survive quite adequately. 
Nevertheless, some documented increase would appear to 
be necessary. Consequently, if the trace metals are to be held 
responsible for any epidemic a change in behavior has to be 
evident as discussed above with the example of enhanced 
fish intake sushi-style. Looking at the list in Table 1 of alien 
elements generally found in the body, it is soon apparent that 
most of these will be of little concern, mainly due to their 
very minor concentrations if presence at all in the body. The 
list can be broken down into several groups.

•	 Elements that appear harmless or have low toxicity 
at low levels (Ag, Al, Ba, Ce, Cs, Ga, Ge, Rb, Sn, Sr) 

•	 Non-carcinogenic (Bi, Cd) 
•	 Toxic and carcinogenic (As, Be, Hg, Pb, Sb, Sc, Tl)
•	 Neurotoxins (Al, As, Hg, Pb, Tl) 

The major basic consideration as outlined above is the 
requirement of life-style changes, either in human diets or 
other aspects. Smoking has been one custom, but now is 
in decline in many countries, but medical advances with 
vaccines is another that has significantly expanded. Such 
an examination of the low ingestion of numerous of these 
elements coupled with food, water, life-style and medical 
services now can further reduce the above list of potential 
hazardous alien elements to Al, As, Ba, Cd, methylHg and Pb 
as having possible deleterious effects on the body that are 
worthy of further consideration. The question of whether 
quantity is important remains uncertain, but as outlined 

may be irrelevant. Nevertheless, many experiments are now 
emerging from animal studies that do indicate effects from 
even low levels, well below the reference or safe minimum 
reference levels or from co-exposures [46]. As already 
indicated, the safe level for lead now is recommended 
as zero that clearly illustrates this may be part of any 
problem. Nevertheless, in order to explain global epidemics, 
change is required. Before the epidemics, people lived with 
contaminated food and water irrespective of their safe 
reference levels and quantities. The question now is what 
is different. They were living adequately before but why not 
now.

What Ingestion of Alien Elements has Really 
Changed?

As suggested, the question of quantity may be irrelevant 
unless it has increased significantly. Nevertheless, one 
relevant aspect of such research is that it has illustrated not 
only effects of trace quantities but has highlighted possible 
synergistic toxic effects between elements in some cases, 
which could also be a contributing factor. Although 
considered in the literature now for almost a decade, very 
little research has involved such mixed trace metal feeding. 
Studies with rats and mice do indicate low level effects and a 
disturbance of the body homeostasis balances with relative 
differences in organ absorptions [78-81]. One study already 
has examined possible human brain mechanisms for metal 
mixtures [82]. Meanwhile, for some of these trace elements, 
environmental public pressure has in fact resulted in their 
actual demise in society. Cd ingested partly from smoking 
has decreased in some countries, and a very significant 
reduction of lead and elemental Hg has occurred in recent 
years as most of their previous commercial applications now 
have become widely banned. Surveys are beginning to note 
the decreases particularly for Cd and also Pb [16,83]. From 
the list above of potentially important alien elements in the 
body Ba has been used medically for many years with no 
apparent adverse effects even though it is actually a heavy-
metal. It does not readily accumulate in the body, is non-
carcinogenic and is not a neurotoxin, and was once used 
commonly, added as a soot suppressant in oil combustion 
but now appears to raise no health concerns in any regard. In 
normal situations its toxicity is of no concern and its level in 
the body is rarely even tested. As mentioned above, cadmium 
is highly toxic and carcinogenic. It retains its inorganic 
nature, not forming organometallic compounds in the body. 
It generally is a low trace level in blood samples as seen 
globally in Figure 4h. It can be ingested as deposition from 
leafy vegetables especially from Cd rich-soil areas in China 
[84-86], from rice [87,88], fish and seafood [89-91], free-
living game [92], and also from tobacco smoking [93]. It has 
a high retention rate by the body and can affect the kidneys. 
A recent review of cadmium’s toxicity suggests its induced 
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oxidative stress on the liver and kidneys can cause pathogenic 
risks for a variety of cancer forms [94]. It is slowly chelated 
naturally by the body’s selenium via its many protective 
protein metallothionein forms [95-99]. However, due to its 
long body half-life, aspects of it managing to pass into the 
brain still remain uncertain as also its possible synergism 
with other toxins. However, a major point of interest here 
stems from the reduced levels of tobacco smoking in the 
world, which is reflected as decreases in surveys of cadmium 
blood levels. Aluminum enters this discussion by recently 
having become the major adjuvant in most US and other 
vaccines, generally in the form of its hydroxide. Generally 
regarded as being medically safe, this is based stressing 
mainly oral data. However, because the intestines have a very 
low absorption rate of only about 1 to 2% for such orally 
ingested aluminum, this assumption now is becoming 
questioned in that inoculations increase this retention value 
closer to 100% [100]. As a result of the great success and 
value of vaccines, this now reflects into a significant change 
and re-assessment for this element in its human-lifestyle 
consumption and also modifies many prior assessments 
from studies with both humans and animals. It is particularly 
important for children in the US, who receive about 35 
inoculations by the age of five, a much-enhanced rate from 
earlier years. As a result, when considered with other 
neurotoxins, this has concerned many major groups [101-
103]. Depending on body weight, it can readily introduce a 
high risk of toxicity, as suggested even from animal studies 
[104-106]. Significant levels also have been noted in brain 
autopsies [107,108], and in cases of death from autism with 
ages from 15-50 years old [109]. This latter study, finding 
one case at age 15 is particularly disturbing. Although 
selenium has been shown to counteract the aluminum in the 
brains of mice and rats, uncertainties remain and glutathione 
peroxidase may even become depleted possibly suggesting a 
slow rate of its replenishing formation capability [110-115]. 
Additionally, a study with human brain cells has noted a 
synergistic collaboration between Al and Hg as neurotoxins 
[116]. As a result, the addition of a new ingested source of Al 
to the already normal dietary intake is significant particularly 
for young people [117]. The case with arsenic is particularly 
interesting as it is already an epidemic of major proportions 
in several parts of the world. The extreme case is in 
Bangladesh and has resulted in recent decades through 
changing the water supply from surface sources to ground 
water wells. It is now affecting millions of people and as a 
result about 20,000 deaths occur per year in Bangladesh 
[118]. This has facilitated many studies in various countries 
concerning arsenic toxicity. It obviously leads to a myriad of 
medical illnesses affecting the skin, lungs, kidneys, a series of 
cancers, cardiovascular risk, and is thought to induce fetal 
loss, premature births and low birth weights [119-121]. 
There are indications of neural effects in some cases, but are 
evident as cases of dementia and memory loss effects. Studies 

with rats do clearly show possible enhanced oxidative 
stresses and neural changes [122-123]. The Western 
countries such as the US and Canada have low arsenic and 
few if any cases of such arsenic poisoning [124]. Arsenic is 
unavoidable and often present in both food and water. 
Dietary intake also is complicated by arsenic’s tendency to 
methylate and be in an organic form. However, some of these 
forms become less toxic, as is the case in fish entailing a full 
speciation analysis for an exact arsenic toxicity level [125-
127]. Rice is another general food source, affected by soil and 
pollution conditions, sometimes becoming methylated [128-
131]. Whether Se protects the brain from more serious 
illnesses such as Alzheimer’s Disease remains uncertain but 
the eating of lentils rich in selenium has been proposed in 
Bangladesh [132], and selenium appears protective in 
arsenic induced impairments in mice and rat studies 
[133,134]. The geographic comparisons between countries 
tends to minimize a critical overall role for arsenic in the 
major epidemical illnesses in the West, but arsenic is 
ubiquitous in the world as a potential toxic collaborator and 
a source of some illnesses. Even though lead has been a 
health risk factor from at least Roman days, it has remained 
an important commercial element until recent decades. 
However, through extensive environmental public pressure 
it has gradually been banned from most commercial products. 
Nevertheless, even today I recently heard of a child being 
poisoned in the US from a newly purchased lead-glazed 
bathtub. It also remains as a glaze for clay pottery in Mexico 
[135], and is still a major concern due to its continuing 
presence. It is with us in all older homes, present as old paint, 
it is on copper water pipes joints in any Pb/Ag solder and 
may even result from old lead connecting water pipes, 
besides being possibly in a drink served from a cut crystal 
glass decanter. Lead is detected in all humans showing a 
significant level in blood. Physicians now are content if it is 
below 50 µg/L in adults or children [136], even though it is 
known that the safe healthy level for lead is zero [38, 39]. It 
remains a significant concern in pregnancies [47], especially 
as lead and most of the other metal elements have 
unrestricted flow in blood through the placenta [137]. It has 
a toxic potential regarding human reproduction even at low 
levels [138]. Effects on children are more significant than 
adults and Pb exposure at low levels continues to be a major 
public concern [139,140]. Young children are particularly 
prone to paint dust gathering on floors. One analysis of data 
from an earlier drinking water “lead crisis” in Washington DC 
(2000-2004) concluded that fetal death rates and reduced 
birth rates were also a consequence [141]. Consequently, 
even though lead-based paints remain in use in many 
countries [142-145], lead blood levels are noted to be in 
decline globally in all developing societies [146-148]. As a 
result, lead does not appear to be a primary element inducing 
recent epidemic growths in illnesses but may be an epigenetic 
modifier as noted in animal studies [149]. Its levels in water 
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and food though remain a medical concern and it may 
continue to play a major role triggering or contributing to 
certain illnesses. A role for selenium as a chelator remains 
uncertain but in areas of lead pollution, residents have been 
noted to have a selenium deficiency [150]. Numerous studies 
with mice and rats clearly document the potential oxidative 
stress that arises from lead exposure and the possible 
beneficial role of selenium [151-155]. 

Mercury now is regarded as the neurotoxin of most 
concern to health. Although it has played a major role 
in commerce for millennia, its health risk became more 
seriously apparent 70 years ago through the neurological 
birth defects originating from the environmental disaster 
in the Minamata village in Japan. Until then, neural illnesses 
were not really at a significant level to be of major concern. 
The phrase “Mad as a hatter” arose from the felt-hat industry 
where mercuric nitrate was used in the process. Mercury’s 
main use centered on its elemental ability to amalgamate 
with other metals, most importantly gold and silver. From 
even Egyptian times this has been a major role and although 
now no longer commercially mined, artisanal mining for 
gold is still an important occupation in numerous parts of 
the world ultimately utilizing mercury amalgamation and 
separation. Its unusual chemical symbol, Hg, originates 
from the Greek “hydrargyrum” (liquid silver). It found use 
in innumerable processes in industry and medicine. These 
ranged from switches, thermometers to the chloralkaline 
process and it has been important in dentistry being used 
as a silver/tin-mercury amalgam in teeth. It is also common 
in certain medications and still as a skin lightener [156-
158]. Although generally banned, this latter use remains 
common particularly in India and Saudi Arabia. Until 
recently, one of mercury’s main medical uses for decades 
has been as the primary adjuvant and preserver in vaccines 
as the water-soluble organic form of thimerosal (sodium 
2-ethylmercurithiosalicylate). In the US it has now been 
replaced in recent years by aluminum hydroxide in most 
vaccines, but remains present in many of those exported 
and can be reintroduced into US vaccines during pandemic 
times. Mercury now has been extensively banned globally 
and only remains in the illicit mining for gold, in the largely 
still uncontrolled gaseous emission from certain combustion 
processes (primarily coal and cement industries), in several 
US vaccines and still is used by some dentists, although 
banned and replaced now in numerous countries [159]. 
It is no longer mined from its ore cinnabar and not easily 
purchased having lost its intrinsic value. Human ingestion 
can be in the elemental form as its vapor, possibly from its 
leaching and vaporization from dental fillings before being 
absorbed and then oxidized to its inorganic divalent ion 
in the blood. It is also in most fish diets as the more toxic 
organic form, methyl mercury, having been extensively 
bio accumulated in nature and the fish as this methylated 

structure. Pollution of most water expanses now has arisen 
and remains from historical colonial days when silver and 
gold mining were extensive [160]. 

Although now coupled to possibly decreasing 
anthropogenic additions to the environment, the still large 
evasive, recycling of these historical excesses in the earth’s 
waters and land retains an uncertainty that will remain 
into the foreseeable future before it may one-day return to 
natural pre-industrial levels. Mercury is the most researched 
element in the periodic table with about 5000 publications/
year in the areas of medical and environmental interests. 
Nevertheless, even with the reduction of mercury in 
vaccines, the growth of consuming sushi from the 1980’s in 
the US diet to now significant levels, and also throughout the 
world has elevated methyl mercury to a major human toxin, 
especially due to its neurotoxic organic nature and ready bio 
accessibility. Studies of heavily fish-eating communities have 
been used to establish the NOAEL and LOAEL, no or lowest 
observed adverse effects levels. Through such studies of the 
Faroe Islands community (whale consumers), and that of the 
Seychelles (Ocean fish-eaters) differences have highlighted 
a missing factor. This appears to be the selenium fish 
component, now realized to be the body’s natural chelator 
for mercury through its many seleno-enzymes and also for 
many of the other alien elements consumed in diets. From the 
current wealth of research several conclusions now can be 
concluded. One is that mercury’s toxicity depends on its form, 
elemental, ionic or organic. From the gold miners, chloralkali 
and dental employees many of whom have been subject to 
prolonged mercury elemental vapor inhalation, they show 
mainly the symptoms of kidney function difficulties (prime 
target organ), with some lesser secondary neural effects 
[161-163]. 

Obviously, over time elemental mercury does appear to 
probably pass across the blood/brain barrier. Once in the 
blood the elemental form is oxidized to the divalent ion [164]. 
Peru still has artisanal gold miner’s shops located in its towns. 
However, there are no reports of severe neural consequences 
in their neighborhoods from released inorganic mercury 
vapor [165]. However, miners are diagnosed with oxidative 
stress and DNA methylation that may have some effect on 
their health [166]. Elemental mercury’s half-life in the body 
is measured in days or several weeks. It is excreted mainly 
in urine and feces. Any related neural effects in fact appear 
reversible with time [167] but in some cases of dental fillings, 
dementia appears to persist [168]. Radioactively labeled 
tooth fillings of sheep were reported to be leached and 
retained by the body [169], however low doses of inorganic 
mercury with rats did show signs of slight entry into the brain 
causing oxidative stress and cell death [170,171]. Organic 
forms of mercury, namely the thimerosal in vaccines and the 
methyl mercury in fish are very neurotoxic and have been 
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extensively examined in humans and numerous animals, 
from mice and rats to rabbits, hamsters and monkeys, some 
studies with labeled mercury. They are readily absorbed 
and have the brain as a major target, passing freely through 
the blood/brain barrier. One study with monkeys was very 
detailed [172]. Thimerosal, readily breaks down in the body 
to ethyl mercury and thiosalicylate. In monkeys, the ethylHg 
has a shortened blood half-life of about seven-fold compared 
to the 22 days for methylHg, and similarly a shorter brain 
half-life of 24 compared to 60 days. What was noteworthy 
in studies was a process of de-alkylation in the brain that 
was significantly more with ethylHg, about 70% becoming 
inorganic compared to 10%. Both in vitro and in vivo 
studies now have been extended and reviewed confirming 
these behaviors [173]. For human diets, from fish-eating 
studies the half-life in the blood is quite variable reflecting 
human susceptibilities, data varying from <30 to >120 days 
[174,175]. 

Brain half-lives for inorganic mercury also are uncertain 
but surmised to be years in magnitude [176]. It became 
evident that seafood exposure to methyl could be neurotoxic 
even at low levels [177-180]. Also, it has been noted in 25 
countries around the world that women of child-bearing 
age have high dietary mercury levels [181]. The two large 
cohort studies on humans utilizing the peoples of the Faroe 
and Seychelles Islands now have spanned several decades. 
Both groups have predominantly seafood diets [182-184]. 
Through these, from their contradictory results it was finally 
accepted that the differing levels of selenium in the fish 
(whale meat or ocean fish) was a major missing factor that 
was modifying their data. It was providing a countermeasure 
of protection from the mercury [185-187]. This was clearly 
confirmed by selenium’s neural protection from methylHg 
now reported in rats and mice [188,189]. The research has 
highlighted the health benefit value of selenium in the body 
and how it differs from the other elements [190-193]. The 
fact that the body is programmed to produce 25 seleno-
proteins appears purposeful [194], as well as its magnitude 
over all the alien elements found in the blood. It is clearly 
apparent that selenium is the body’s natural chelator, not 
only for mercury, but for the alien elements. It has also been 
suggested as a protector against manganese, possibly not 
necessary in a healthy person [195]. However, this aspect of 
selenium now introduces a need for a reassessment of fish 
in diets [196-198]. As long as selenium is present in excess 
of the mercury on an atomic level, it has the potential to 
neutralize or sequester mercury’s deleterious effects [199]. 
The fact that selenium has an atomic weight of 79 compared 
to mercury’s 201 introduces an additional factor of 2.5 
advantage for selenium on an atomic basis. This is important 
as many fish analyses are generally analyzed by weight 
and now require conversion to molar quantities to test for 
this ratio [200-204]. In addition, the nature of the specific 

selenoprotein appears to be involved and complicates this 
further [205,206]. Also, it has also been suggested that 
high levels of organic mercury together with other alien 
elements may lead to a dangerous deficiency of required 
selenium enzymes [207]. Selenium is a unique element 
being necessary for life but is also a neurotoxin. It displays a 
narrow dosage range between being therapeutic or toxic. An 
acceptable dietary range is 40-250 µg/day, optimum being 
an intake of 100-200 µg/day [208], but a consistent dose 
of 300 µg/day for 5 years now has shown the possibility of 
increased mortality [209]. Many soils around the world are 
deficient in selenium and are of great concern for agriculture 
and diets [210-213]. Since 1984, Finland has been using Se-
enriched fertilizers to enrich crops [214], while others tend 
to enrich feed stocks. Nevertheless, it has now been realized 
that selenium plays a very important role in the body in the 
form of its glutathione peroxidase enzymes, which regulate 
body inflammation [215], and have a role also in brain 
signaling [216]. Nevertheless, some doctors presently do not 
recommend selenium use during pregnancy [217] due to the 
observed overall uncertainties [206]. 

Are Epidemics Due to Increased Levels of 
Alien Elements that Deplete Selenium’s 
Protection? 

The medical profession has realized for some time 
that the heavy metals are a major health concern, their 
mechanism being one of oxidation [218]. As indicated above, 
their mitigation in the body can be by a large regimen of 
selenoenzymes that chelate and sequester them before 
elimination [219]. Canada has recognized this importance, 
monitored their total population for blood selenium levels, 
and finding it fully in the desirable 100-400 µg/L range 
with a mean close to 200 µg/L [220]. Nature has endowed 
most people with body selenium levels in excess over any 
alien metals present [221], an interesting feature in itself. 
Currently the literature is very rich with research on selenium 
surmising that its deficiency may be associated with a 
whole string of many illnesses that involve oxidative stress, 
namely organ failure in critically ill children [222], thyroid 
problems [223-225], strokes, atherosclerosis, oxidized LDL 
(low density lipids), osteoporosis, and all cardiovascular 
illnesses [226-228], cancers [229-232], Huntington’s disease 
[233], Parkinson’s [234-236], Alzheimer’s [235,237-241], 
pregnancy and adverse outcomes [206,242-246], autism 
[247,248], amyotrophic lateral sclerosis (ALS) [249,250], 
schizophrenia [251], and others. Its importance in pregnancy 
currently is being emphasized, recommending maternal 
blood levels of at least 100 µg/L. Recent research is important 
in possibly explaining how a fetus survives the high toxicity 
of its environment [252]. In two noteworthy studies it was 
reported that the selenium blood level in the umbilical cord 
was much higher than that of methyl-mercury. Converting 
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these to molar or atomic quantities it was found that the Se 
to Hg ratios were 62-fold [253] in one study, and in a range of 
5 to 626 [254] in another, indicating possibly the overlooked 
required protection needed for the low weight fetus during 
pregnancy. Missing data now needed are the potential rates 
of depletion and formation of these selenoenzymes and 
whether selenium can become depleted [255]. Such research 
remains primitive and selenium’s biology of selenoprotein 
degradation and metabolism remains uncertain [256].

Conclusion

On analyzing the necessary components of human diet, 
it can safely be concluded that few pronounced changes have 
occurred in recent decades. However, it is quite extraordinary 
that diets do contain a significant number of elements that 
serve no purpose and are regarded as alien species, do 
nothing other than increase the body’s burden for required 
elimination. Many of these are toxins and neurotoxins but 
fortunately generally at low levels in the blood. A detailed 
examination for the changes necessary to trigger modern 
epidemics concludes that the only elements of pronounced 
interest are Al, As, Hg, Pb, all in fact neurotoxins and hazardous. 
From these Al and Hg have gained more importance due to 
their global growth through life-style changes. Arsenic poses 
severe problems in drinking water around the world but 
is largely controlled in the Western developed countries. 
Pb is a major toxin that certainly still remains dangerous 
particularly for young children but is in a continuing state of 
decline in diets, particularly in adults, as it gets more heavily 
controlled and removed from commerce. This tends to leave 
Hg and Al as the prime suspects at present for most medical 
illnesses. Animal research also is noting that these can also be 
accentuated by association with other trace elements. They 
are necessarily in all peoples who are vaccinated and/or eat 
a fish diet. The latter is most common around the world and 
although Al now is being reported in many brain autopsies, 
Hg is most probably the more toxic, occurring also more 
frequently now in individuals as mercury poisoning from 
fish diets. The medical profession emphasizes the nutritional 
benefits of fish, which is true, and as a safeguard smaller 
class of fish now should be eaten for which Se > Hg rather 
than the larger fish categories that remain rich in methylHg. 
As a result, it can be quite positively surmised at present 
that adults are more likely to be suffering from a mercury 
body burden while for young infants’ aluminum becomes the 
major concern. The toxicity of these metals during pregnancy 
remains an ignored subject. The fetus when small technically 
should not survive the toxic levels to which it is subjected. 
Whether the high levels of the selenoproteins, blood brain 
barrier and yet unknown other defenses exist has to be 
resolved. Nevertheless, younger women of child bearing ages 
require guidance. 

 What is becoming apparent is that health is becoming 
the accepted responsibility of each individual. This is now 
quite broadly accepted in patients with Cardio or diabetic 
conditions in Western societies where monitoring is more 
readily available. However, in the present case of knowing 
one’s susceptibility to metal toxins there is a void. Although 
many studies are now reporting a need for this information, 
it still cannot be readily prescribed by a doctor [257-260]. 
The public needs to establish its location on blood survey 
curves to establish their individual genetic susceptibilities 
concerning possible high retention of dangerous chemicals 
or satisfactory rejection. If established, additional steps 
can be identified to reduce any levels of concern. As a 
result, testing from an early age till death has to become 
standardized in the near future concerning specifically the 
neurotoxins Al, As, Hg, Pb, Mn and Se to enable a personal 
management of health. By using a simple low-cost blood test 
available to the general public, it is possible in one analysis 
of a small blood sample to resolve this issue. Such a test 
now has been validated utilizing the ICP-MS instrument 
[261,262]. It remains ridiculous that everyone goes through 
life not knowing the state of their bodies and whether they 
are living at high risk or not, the necessary technology now 
is available. This is of major importance especially for pre-
pregnancy testing in younger women. 
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