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Abstract

Background: Biomarkers are important tools in toxicology that can improve risk assessment, early detection of organ injury, 
and monitoring of pharmacological responses. However, rigorous validation is necessary to justify use for regulatory decision-
making. 
Purpose: This article reviews the current landscape surrounding established and emerging biomarkers of toxicity across 
multiple techniques, with a focus on assessment of merits, limitations, and validation needs.
Main Body: An overview of common clinical chemistry biomarkers used for safety monitoring of liver, kidney, heart, and 
inflammation is first provided, highlighting their biological relevance and applications in detecting organ dysfunction. Novel 
protein biomarkers emerging for enhanced sensitivity of injury detection are then discussed, such as microRNAs for liver and 
clusterin for kidney. Metabolomic biomarker approaches to assess biofluids and mitochondrial toxicity are outlined, along 
with toxicogenomic markers of susceptibility like HLA alleles. Non-invasive imaging techniques including ultrasound, MRI, 
and PET tracers for organ function are explored as techniques that provide additional modalities for biomarker measurement. 
Emerging tools like organ microphysiological systems and high-throughput omics for biomarker discovery are also described. 
Conclusion: While great progress has been made, translation and qualification of novel biomarkers remains challenging. 
This review synthesizes key developments across biomarker categories, evaluates readiness for regulatory use, and outlines 
strategic considerations for fit-for-purpose biomarker validation to advance integration into drug development programs.
 
Keywords: Biomarkers; Toxicity; Validation; MicroRNAs; Metabolomics; Drug safety

Abbreviations: ALT: Alanine Aminotransferase; AST: 
Aspartate Aminotransferase; ALP: Alkaline Phosphatase; 
BUN: Blood Urea Nitrogen; BNP: Brain Natriuretic Peptide: 

CK-MB: Creatine Kinase MB; CRP-C: Reactive Protein; IL: 
Interleukin; TNF: Tumor Necrosis Factor; miRNA-MicroRNA; 
HMGB1: High Mobility Group Box1; K18: Keratin 18; NGAL: 

https://medwinpublishers.com/ACT/
https://portal.issn.org/resource/ISSN/2577-4328#
https://medwinpublishers.com/
https://doi.org/10.23880/act-16000293


Advances in Clinical Toxicology2

Tamer A. Addissouky, et al. Emerging Technologies and Advanced Biomarkers for Enhanced Toxicity 
Prediction and Safety Pharmacology. Adv Clin Toxicol 2024, 9(1): 000293.

Copyright©  Tamer A. Addissouky, et al.

Neutrophil Gelatinase Associated Lipocalin; HLA: Human 
Leukocyte Antigen; DNA: Deoxyribonucleic Acid; mtDNA - 
Mitochondrial DNA; MRI: Magnetic Resonance Imaging; PET: 
Positron Emission Tomography; FDG: Fluorodeoxyglucose; 
OCT: Optical Coherence Tomography; FDA: Food and Drug 
Administration; BEST: Biomarkers, Endpoints, and other 
Tools.

Introduction

Biomarkers are biological indicators that can be 
objectively measured and evaluated as indicators of 
normal biological processes, pathogenic processes, or 
pharmacological responses to therapeutic intervention [1]. 
Biomarkers can be classified into three main categories - 
exposure, effect, and susceptibility biomarkers as depicted 
in Figure 1 [2].

 

Figure 1: Biomarkers uses [2].

Exposure biomarkers indicate exposure to exogenous 
substances and can detect the presence and amount of 
exogenous chemicals or their metabolites. Effect biomarkers 
measure the biochemical, physiological, behavioral, or other 
alterations within an organism that can be recognized as 
an established or potential health impairment or disease. 
Susceptibility biomarkers indicate an inherent or acquired 
ability to respond to a substance in a particular way [3-
8]. The use of biomarkers has several advantages over 
traditional approaches for toxicity testing. Biomarkers 
allow for rapid and high-throughput screening, provide 
mechanistic insights, and enable the detection of toxicity at 
lower levels of biological organization. However, there are 
also limitations to biomarkers such as lack of specificity, 
high natural variability, and difficulty in establishing links 
between biomarkers and apical endpoints. Proper biomarker 
validation is therefore critical [9-12]. Validation of a biomarker 

requires demonstrating its link to a biological process or 
endpoint, determining normal baseline values, evaluating 
reliability, reproducibility and robustness, and assessing 
responses following repeated exposures. Key criteria 
include sensitivity, specificity, accuracy, reproducibility, and 
relevance of the biomarker to the biological endpoint being 
measured. Rigorous statistical analysis of the performance 
characteristics is necessary during the validation process 
[13-17].

While biomarkers show promise for enhancing toxicity 
testing and regulatory decision-making, qualification remains 
challenging. This review provides a comprehensive overview 
of state-of-the-art toxicity biomarkers across multiple 
techniques and biological levels. It aims to assess the current 
landscape of biomarker validation and application, evaluate 
merits and limitations of emerging technologies, highlight 
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key biomarkers with potential for further development, and 
discuss strategic considerations surrounding integration into 
the drug development pipeline. Critical analysis is provided 
to inform fit-for-purpose biomarker qualification efforts.

Clinical Biomarkers 

Liver function tests are important biomarkers for 
detecting liver injury. Alanine aminotransferase (ALT) and 
aspartate aminotransferase (AST) are enzymes found in 
hepatocytes that are released upon cell damage, resulting 
in elevated serum levels. Alkaline phosphatase (ALP) is 
also elevated with cholestasis and bile duct obstruction. 
Bilirubin levels reflect liver excretory capacity and increase 
with hepatocellular injury. These biomarkers provide insight 
into different types of liver toxicity [18-25]. Kidney function 
biomarkers include creatinine, blood urea nitrogen (BUN) 
and albumin. Creatinine is a byproduct of muscle metabolism 
filtered by the glomeruli, so elevated levels indicate 
impaired filtration. BUN is a nitrogenous waste product that 
accumulates with kidney dysfunction. Decreased albumin 
suggests impaired reabsorption capacity. These biomarkers 
help assess nephrotoxicity and are considered standard 
measures of renal function [26-28]. Cardiac markers are 
used to detect cardiac muscle injury. Cardiac troponins T and 
I are structural proteins specific to the heart that are released 
with damage. Brain natriuretic peptide (BNP) is secreted 
by ventricular cardiomyocytes in response to wall stress. 
Creatine kinase MB (CK-MB) is an enzyme present in cardiac 
muscle that rises acutely after myocardial infarction. These 

biomarkers help diagnose different forms of cardiotoxicity 
[29-31]. Inflammatory cytokine biomarkers and C-reactive 
protein (CRP) elevate in response to tissue injury, infection 
and inflammation. Cytokines like IL-1, IL-6, TNF-alpha and 
CRP are nonspecific markers of systemic inflammation that 
are useful for monitoring inflammatory and immunotoxic 
effects [32-33].
 

Novel Protein Biomarkers 

MicroRNAs (miRNAs) are short non-coding RNAs that 
regulate gene expression at the post-transcriptional level. 
miR-122 and miR-192 are liver-specific miRNAs that are 
released into circulation upon liver injury, making them 
sensitive biomarkers of hepatotoxicity as depicted in Table 
1. Studies have shown miR-122 can detect liver injury earlier 
compared to traditional enzymes like AST and ALT [34-35]. 
High mobility group box 1 (HMGB1) is a nuclear protein 
released during necrosis that promotes inflammation. 
Caspase-cleaved keratin 18 (K18) is a protein fragment 
generated during apoptosis. Both are emerging biomarkers 
with potential to differentiate apoptotic and necrotic 
cell death mechanisms in drug-induced liver injury [36]. 
Clusterin is a glycoprotein induced in renal tubular injury and 
glomerular disease. Cystatin C is a cysteine protease inhibitor 
that is filtered by the glomerulus and has been proposed as 
an alternative to creatinine. Neutrophil gelatinase-associated 
lipocalin (NGAL) is one of the earliest biomarkers elevated 
after acute kidney injury. These novel urinary proteins show 
promise for detecting nephrotoxicity [37].

Biomarker Organ Description Advantages Limitations

miR-122 Liver MicroRNA released by injured 
hepatocytes

High sensitivity, earlier 
indicator than ALT/AST Not liver specific

miR-192 Kidney MicroRNA marker of proximal 
tubule injury

Sensitive marker of AKI, stable 
in biofluids

Expression affected by age, 
gender, BMI

HMGB1 Multiple Nuclear protein released 
during necrosis

Indicates mechanism of cell 
death Lacks organ specificity

K18 Liver Caspase-cleaved keratin 
marker of apoptosis

Distinguishes apoptosis vs 
necrosis Limited evidence in humans

Clusterin Kidney Glycoprotein induced in 
tubular injury

Early biomarker of renal 
damage

Not specific for cellular 
injury mechanism

Table 1: Emerging Protein Biomarkers of Organ Injury.

Metabolomics Biomarkers 

Metabolomics has become a powerful approach for 
discovering biomarkers and evaluating toxicity over 
the past ten years. It involves analyzing small molecule 
metabolites and metabolic profiles in biological fluids 
and tissues. Recent advances in mass spectrometry and 

NMR spectroscopy enable simultaneous quantification of 
thousands of metabolites in biofluids and tissues, providing 
a comprehensive view of metabolic pathways and networks 
that complements other omics approaches like genomics and 
proteomics [38]. Ultrahigh resolution mass spectrometers 
can detect metabolites at very low concentrations with high 
reproducibility.
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 A key advantage of metabolomics is that metabolites 
give a functional readout of biochemical activity and cellular 
phenotype, integrating genetic and environmental influences 
to provide insights into mechanisms of toxicity. Metabolic 
profiles can be classified by pattern recognition based on 
global signatures, while targeted methods quantify known 
biomarker panels. Resources like the Human Metabolome 
Database allow altered metabolites to be mapped onto 
interconnected pathways [38]. Key applications in toxicology 
include detecting organ injury in liver, kidney, heart and 
brain using biofluids like urine, blood and cerebrospinal 
fluid. Mitochondrial dysfunction, oxidative stress, fatty 
liver disease and cholestasis can also be assessed through 
metabolites. Bile acids synthesized in hepatocytes rise with 
cholestasis, making them sensitive indicators of impaired 
bile flow. Specific bile acids like glycochenodeoxycholic acid 
show promise for diagnosing drug-induced liver injury [39]. 
Acylcarnitines are intermediates in mitochondrial fatty acid 
beta-oxidation, so elevated long-chain acylcarnitines reflect 
mitochondrial dysfunction and can mark toxicity from drugs 
like valproic acid [40,41]. Taurine-conjugated bile acids and 
fatty acids generated during metabolism can serve as urinary 
biomarkers of liver and kidney injury in animal models [42].

Genomic Biomarkers 

Genomic approaches like transcriptomics, proteomics, 
and epigenetics are being applied to find new biomarkers. 
High-throughput omics profiles can screen thousands of 
molecular targets to identify signatures linked to toxicity 
pathways. Transcriptomics analyzes global mRNA expression 
changes. Certain human leukocyte antigen (HLA) alleles have 
been linked to increased risk of idiosyncratic drug-induced 
liver injury (DILI) with some medications, suggesting HLA 
genotyping could help identify susceptible individuals 
[43,44].
 

Toxicogenomics examines global gene expression 
changes. Toxicogenomics can differentiate compounds 
causing liver, kidney, heart, or nervous system toxicity in 
preclinical models. Machine learning methods have defined 
genomic biomarker signatures that can distinguish DILI 
compounds from non-hepatotoxicants in preclinical models. 
These signatures could aid toxicity screening if sufficiently 
validated [45,46].
 

Proteomics assesses protein expression and post-
translational modifications using techniques like mass 
spectrometry. Multiplex protein assays can measure panels 
of biomarkers, improving predictive capacity over individual 
proteins. Proteomic analysis of biofluids or tissues can provide 
mechanistic insights. Epigenetic DNA modifications like 
methylation and histone alterations mediate environmental 
influences on gene expression. Epigenetic biomarkers are 

still at early stages, but DNA methylation changes have been 
associated with exposures like metals, enabling detection of 
prior insults. Mitochondrial DNA (mtDNA) is more vulnerable 
to damage from reactive metabolites versus nuclear DNA. 
mtDNA damage and mutations have been proposed to 
underlie mitochondrial toxicity. Assays detecting decreased 
mtDNA content or increased deletions show promise for 
monitoring mitochondrial genotoxicity [47].

Imaging Biomarkers 

Imaging technologies are being explored as non-invasive 
methods to assess organ toxicity. Quantitative ultrasound can 
measure liver fat content by analyzing tissue echogenicity, 
attenuation, and backscatter properties. Ultrasound 
elasticity imaging is also being developed to stage liver 
fibrosis. MRI can quantify liver and kidney fibrosis through 
techniques like elastography which visualize tissue stiffness. 
Advanced imaging techniques like ultrasound, MRI, CT, and 
nuclear imaging are being explored as noninvasive methods 
to assess organ function and toxicity. These modalities 
provide spatial information and enable repeated measures 
over time [48]. Positron emission tomography (PET) involves 
injecting targeted radiotracers to quantitatively image 
tissue receptors, transporters, and enzymes in vivo. Nuclear 
imaging with PET and SPECT tracers allows visualization of 
organ metabolism, blood flow, receptors, and transporters. 
PET tracers for mitochondria function, neuroinflammation, 
and drug transporters are in development to detect early 
functional changes that may precede gross organ damage. 
Radioisotope clearance studies can also assess kidney and 
liver function. PET tracers for things like mitochondrial 
function, dopamine receptors, and drug transporters are 
being developed to detect organ-specific functional changes 
that may precede gross toxicity [49,50].

Emerging Technologies 

Microphysiological systems incorporate human cells 
into engineered microenvironments mimicking tissues and 
organs on a small scale. These “organs-on-chips” allow high-
throughput toxicity screening and measurement of functional 
biomarkers in a human-relevant context. Systems have been 
developed for liver, kidney, lung, heart, intestine, brain and 
other organs. Organ-on-a-chip microfluidic devices contain 
human cells in an engineered microenvironment mimicking 
physiological tissue and organ functions as depicted in Table 
2. Organs-on-chips overcome limitations of conventional 
cell cultures by modeling key factors like tissue-tissue 
interfaces, spatiochemical gradients, mechanical forces and 
immune components. This provides more predictive toxicity 
assessment and mechanistic insights compared to standard 
in vitro assays. These systems allow high-throughput toxicity 
screening and measurement of mechanistic biomarkers in a 
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human-relevant context [51,52]. Stem cell derived organoids 
are self-organized 3D tissue cultures that recapitulate 
aspects of the developmental program and architecture of 
organs. Organoids can be used to model diseases, screen 
drugs, and test toxicities in a human-specific manner. 
Biomarkers related to things like liver enzymes, fibrosis, 
and lipid accumulation have been evaluated. Multiplexed 
protein assays using techniques like mass spectrometry 
allow simultaneous quantification of hundreds of proteins in 
a small volume. This facilitates screening of large compound 
libraries and derivation of multigene toxicity signatures. 

However, signatures developed on animal models require 
validation in human trials [53]. Multiplex cytokine panels 
are being applied to assess panels of cytokine biomarkers. 
Multiplex assays enhance throughput but can suffer from 
technical issues like cross-reactivity [54,55]. These emerging 
technologies provide new capabilities for toxicity assessment 
and biomarker discovery. However, integration into drug 
development requires extensive validation of clinical utility 
and correlation with apical measures of organ injury or 
function.

Modality Biomarker Potential Examples Limitations Regulatory 
Status

Ultrasound Liver steatosis/fibrosis
Controlled attenuation 

parameter, acoustic 
structure quantification

User/technique 
dependent Not qualified

MRI 
Elastography Liver/kidney fibrosis Shear stiffness 

measurement
Limited 

standardization
FDA qualified for 

liver

PET Imaging Organ function, transporters/
receptors FDG, 11C-metformin Radiation exposure, 

high cost
Exploratory 

stage

OCT Imaging Cell/tissue morphology High-resolution 
microscopy

Limited depth, lack of 
quantification Preclinical utility

Table 2: Imaging Modalities as Emerging Toxicity Biomarkers.

Future Directions 

One major future direction should be advancing 
qualification of emerging biomarker modalities like 
metabolomics, proteomics, transcriptomics and imaging. 
This requires studies directly correlating findings from 
these technologies with organ histopathology and injury in 
human clinical trials. Multiplexed platforms that integrate 
complementary biomarker modalities like proteins, 
metabolites, and gene expression signatures to enhance 
predictive capacity beyond individual biomarkers also need 
further development and qualification [56]. Additional 
future directions include leveraging high-throughput omics 
and bioinformatics to efficiently screen large patient cohorts 
for discovery and validation of biomarker signatures, while 
remaining vigilant of overfitting. Expanding open-access data 
repositories and biobanks to share biomarker data across 
translational phases will facilitate collective progress [57]. 
Providing regulatory guidance on appropriate study designs 
and evidentiary requirements for biomarker qualification is 
also important to advance translation [58]. Finally, further 
developing microphysiological systems and organs-on-
chips to provide advanced human models for biomarker 
discovery prior to clinical validation remains an area for 
future investment [59]. Exploring emerging technologies 
like circulating miRNAs, photoacoustics, radiomics, and 
targeted imaging probes for non-invasive assessment of 

organ function and injury also holds great promise for the 
future [60].

Conclusion

This review demonstrates that while traditional 
biomarkers of organ toxicity like liver enzymes and 
serum creatinine remain clinically useful, an expanding 
array of novel biomarkers show promise for improving 
sensitivity, specificity, and prediction of tissue injury in drug 
development. Notably, newer techniques like metabolomics 
profiling, genomic signatures, and molecular imaging provide 
complementary modalities to assess discrete aspects of 
toxicity pathways from exposure to functional impairment. 
Though still early in qualification, microRNA panels, bile 
acid metabolites, elastography, and multiplex protein assays 
exemplify approaches with translational potential if rigorous 
fit-for-purpose validation is conducted.
 

Recommendations

To advance regulatory qualification and clinical integration 
of promising toxicity biomarkers, several strategic 
recommendations can be made:
•	 Prioritize biomarker development efforts around gaps in 

sensitivity of current gold standards, focusing on clinical 
relevance. 
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•	 Employ fit-for-purpose validation encompassing 
analytical validity, clinical association with 
histopathology, kinetics in reversible vs irreversible 
injury, and testing across diverse patient populations.

•	 Develop biomarkers with multiple applications across 
drug development, such as utility for both preclinical 
screening and clinical diagnostics. 

•	 Collect preliminary biomarker data in early clinical trials 
to guide integration into subsequent efficacy studies and 
risk management programs.

•	 Utilize public-private partnerships and regulatory 
feedback to align with evidentiary requirements for 
biomarker qualification.

•	 Establish biobanks and open-access data repositories 
to support biomarker research from discovery through 
validation stages.

•	 Employ fit-for-purpose multivariate signatures and 
assess utility of emerging biomarkers over traditional 
methods in combined models.

•	 Explore clinically relevant multiplexed platforms that 
enable evaluation of biomarker panels for enhanced 
predictive capacity.
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