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Abstract

According to the World Health Organization, snake envenomation is a major neglected public health problem. In addition to 
deaths, these accidents cause other severe disabilities, such as amputations. Annually, around 2 million people worldwide are 
affected by snakebite, with Africa, Asia, and Latin America being the regions most affected. Snakes of the Bothrops genus are 
the main cause of snakebite accidents in Latin America. Serine proteases (SVSPs) are one of the main protein families that have 
been implicated in the alterations of the human hemostasis, which causes a tendency to increase thrombotic and hemorrhagic 
processes. Part of SVSPs, are thrombin-like enzymes (TLEs), which recognize and cleave human fibrinogen, but usually 
only releasing fibrinopeptide A or B and do not act on the coagulation Factor XIII. Consequently, these toxins contribute to 
coagulopathy by fibrinogen consumption, one of the major systemic hemostatic disturbances, frequently observed in snakebite 
victims. The bothropic antivenom is effective in reversing most of the systemic effects of envenomation when administered 
early in an adequate therapeutic dose. However, studies have demonstrated that, in some cases, antivenoms do not completely 
neutralize the action of SVSPs, which are co-responsible for systemic and local effects, such as coagulopathy and hemorrhage. 
In this context, a better understanding of SVSPs’ role in coagulopathy caused by envenomation, and developing new strategies 
to inhibit these toxins are important. To achieve this, we aimed in the current work to isolate an enriched pool of SVSPs from 
Bothrops jararaca and Bothrops atrox, to better understand the SVSPs’ interaction with murine monoclonal antibody (mAb) 
anti-SVSPs.
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Introduction

Snake envenomation is a neglected public health 
problem, occurring more frequently in populations with 
limited access to health services [1]. Approximately 2 million 
people worldwide are affected by snakebite every year, 
with Africa, Asia, and Latin America being the regions most 
affected by it [2].

In Latin America, snakes of the Bothrops genus are the 
leading cause of snakebite accidents. Brazil is the country 
with the highest number of cases on the continent, registering 
approximately 19.882 snakebites and 66 deaths per year, 
with Bothrops snakes causing 90% of these accidents [3]. 
Peru has 4,500 documented cases per year, Venezuela has 
2,500 to 3,000 cases, Colombia has 2,675 cases, Ecuador has 
1,200 to 1,400 cases, and Argentina has 1,150 to 1,250 cases 
[4]. In Colombia and Costa Rica, Bothrops asper is the species 
responsible for the majority of accidents [5,6].

Bothrops’ venom has a wide range of effects on the 
victim’s body. It exhibits proteolytic effects Nishida S, et 
al. [7] pro-coagulant properties Luciano PM, et al. [8] and 
induces hemorrhage Yamashita KM, et al. [8,9] and pro- 
inflammatory responses [10]. These effects lead to various 
local manifestations, including pain, edema, bruising, blisters, 
necrosis, and gangrene Azevedo-Marques MM, et al. [11,12] 
as well as systemic effects like gingival bleeding, epistaxis, 
hematuria, acute renal failure, hematemesis, hypotension, 
and shock [13,14].

The overall composition of bothropic venom includes 
several components, such as metalloproteases (SVMPs), serine 
proteases (SVSPs), phospholipases A2 (PLA2), C-type lectins, 
bradykinin enhancers, L-amino acid oxidases, hyaluronidases, 
and venom endothelial growth factors [15,16].

Phospholipases (PLA2s) are one of the most thoroughly 
studied enzyme proteins present in venoms [17]. These 
enzymes have important functions in several biological 
processes such as local and/or systemic myotoxicity Andria˜o-
Escarso SH, et al. [18,19] and inflammatory activity [20].

A rapid inflammatory process at the site of venom 
injection causes the increase of permeability of capillaries 
and venules by direct action of the components of the venom 
on microvasculature and the effect of endogenous mediators, 
lead to the formation of edema [21,22]. Animals inoculated 
with Bothrops atrox venom showed an increase in Aspartate 
aminotransferase (AST) and alanine aminotransferase (ALT) 
levels, indicating tissue and liver abnormalities Talwer GP, et 
al. [23] as demonstrated by Gonçalves, et al. for B. jararaca in 
rats and Chaves, et al. [24,25] for B. asper in mice.

The venom toxins also interact with the hemostatic 
system, causing disruptions in the endothelium, activation 
of the coagulation cascade and consequently enhancing 
the fibrinolytic activity, leading to increased hemorrhagic 
and procoagulant processes. SVMPs and SVSPs are the two 
main protein families responsible for the local and systemic 
effects. They play crucial roles in the proteolytic degradation 
of endothelial cell surface proteins, as well as in the induction 
of inflammatory, proteolytic, hemorrhagic, and procoagulant 
effects [26,27].

SVMPs and SVSPs are the two main protein families 
responsible for the local and systemic effects. Unclotable 
blood is one of the most characteristic effects induced 
by Bothrops envenomation and this outcome is closely 
associated with the action of SVMPs. Snake venom 
metalloproteases can also cause proteolysis of basal lamina 
components in microvessels, resulting in the loss of vascular 
wall integrity and leading to blood extravasation into the 
skin [21,28]. However, Bjarnason, et al. [29] and Perez, et al. 
[30] described the SVSPs as co- responsible for acting in a 
synergic manner with the SVMPs on the local hemorrhagic 
effect. In concordance to these authors, Santoro, et al. 
described the venom of the Bothrops jararaca snake as a rich 
mixture of enzymes and proteins that destabilize hemostasis 
in a multi- factorial manner [31].

Among SVSPs, there is a group of toxins able to recognize 
and cleave human fibrinogen, named thrombin-like enzymes. 
However, unlike human thrombin, these enzymes generally 
cleave either the α-chain or the β-chain of fibrinogen to give 
fibrinopeptide A or B, which results in the consumption of 
fibrinogen without forming stable fibrin. Moreover, these 
toxins usually do not activate factor XIII, and consequently 
an unstable fibrin network more susceptible to the action 
of the fibrinolytic system occurs. As a consequence, these 
toxins contribute to coagulopathy by consuming fibrinogen, 
which is a major systemic hemostatic disturbance commonly 
observed in snakebite victims [32-34]. Serine proteases also 
interfere with different aspects of human hemostasis, such 
as platelet aggregation and coagulation cascade [35].

The administration of bothropic antivenom in 
envenomed patients is recognized by the WHO as the 
recommended treatment for snakebite accidents [36,37]. 
The antivenom is effective in reversing most of the systemic 
effects of envenomation when administered early in an 
adequate therapeutic dose [36].

Studies have shown that the bothropic antivenom may 
not fully reverse the local effects of the venom, even when 
used in large quantities, and the time elapsed between the 
accident and treatment can lead to temporary or permanent 
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disability of the affected limb [38]. Furthermore, some 
papers have demonstrated that bothropic antivenom does 
not completely neutralize the action of SVSPs, present in the 
venoms [39].

Therefore, it is essential to gain a better understanding of 
SVSPs’ action, in coagulopathies caused by envenomation and 
try to develop new strategies to inhibit these toxins during 
the patient’s treatment. To achieve this, in this current work, 
we isolated enriched pools of SVSPs from Bothrops snakes 
and evaluated the interaction of these toxins in the presence 
of murine monoclonal (mAb) anti-SVSPs in experiments that 
simulated human coagulation.

Material and Methods

Reagents

Activated partial thromboplastin time reagent (aPTT 
clot), containing ellagic acid and synthetic phospholipids 
and Prothrombin time clot reagent (PT clot), containing 
tissue thromboplastin (rabbit brain extract) were purchased 
from BIOS Diagnóstica® (São Paulo, SP, Brazil). The column 
Benzamidine Sepharose 6B, was obtained from GE HealthCare. 
The chromogenic substrate S-2238 (H-D-Phe-Pip-Arg-pNa, 
2HCl) was purchased from Chromogenix (Milano, Italy). The 
other reagents used are of the highest possible purity.

Venom and Monoclonal Antibody Antivenom

Bothrops jararaca venom (batch: 220007) was supplied 
by the Hyperimmune Plasmas Processing Section, Butantan 
Institute, São Paulo, Brazil. The Bothrops atrox venom (batch: 
ATX 21/003) was supplied by CETA Ltda, Morungaba, São 
Paulo, Brazil. The monoclonal antibody anti-serine protease 
(mAb-anti-SVSPs - (6AD2-G5) was previously purified by 
group.

Blood and Plasma Samples

Pool (162 mL) of citrated (0.32% final concentration) 
human plasma, was a donation of Colsan (Associação 
Beneficiente de Coleta de sangue) (Hemorrede SP/SUS) 
(Av Jandira, 1260), São Paulo, Brazil. Aliquots were stored 
at -80°C. The samples were collected immediately before 
use and maintained cooled. After obtaining the blood, the 
platelet poor plasma (PPP) was obtained by centrifugation 
at 25°C for 20 min at 2,500 x g. The samples were stored at 
- 20°C until use.

Affinity Chromatography

Venoms (Bothrops jaracara and Bothrops atrox) were 
fractionated by affinity chromatography on a Benzamidine 

Sepharose (HiTrap TM) column (0.7 x 2.5 cm, 1mL) 
(Amersham Pharmacia Biotech AB, Uppsala, Sweden), 
previously equilibrated with buffer A (Tris-HCl 0.05M, pH 
7.6). Then, the elution was performed constant flow of 1mL/
min with buffer (Tris-HCl 0.05 M, pH 7.6 + NaCl 0.5 M) as 
eluent B and (Glycine-HCl 0.02 M, pH 3.2) as buffer C [40]. 
All peak profiles were monitored by their absorbance at A280 
nm and A214 nm. The fractions were equilibrated in buffer 
A, desalted, and concentrated into an Amicon® System 
containing a 3kDa size exclusion filter (Amicon, Millipore, 
Germany).

Analysis of Fibrinogen Cleavage Inhibition by 
Anti-SVSP mAb

Sixteen micrograms of human fibrinogen (Sigma-
Aldrich, MO, USA) was incubated with enriched pools of 
SVSPs (0.6 μg) and mAb anti-SVSPs 6AD2-G5 (4 μg, 8 μg and 
16 μg) for 1h   at 37°C in a wet bath under constant gentle 
agitation. Next, samples were submitted to a 10% SDS-PAGE 
under reducing conditions and the gels were stained with 
Coomassie Brilliant Blue R-250. The fibrinogenolytic activity 
was determined by the cleavage of α, β and/or γ chains of the 
fibrinogen.

Determination of the Inhibiting Activity of mAb 
Anti-SVSP In Hydrolysis of H-D- Phe-Pip-Arg-
pNan·2HCl by SP-BjV and SP-BaV

The inhibition of SP-BjV and SP-BaV by mAb anti-SVSP 
was determined by the residual of enzymatic activity on the 
chromogenic substrate specific to thrombin-like enzymes, 
H-D- Val-Leu-Arg-pNan (S-2238 - Chromogenix). In typical 
experiments, 2µg of SP-BjV and 1 µg of SP- BaV were pre-
incubated with increase quantities of mAb anti-SVSP (1, 2, 
4, 8 and 16 µg) at 37°C and, after 10 minutes, 20 µL of the 
substrate (2mM) was added, in a final volume of 100µL, 
continuing incubation for 30 minutes at 37°C. The hydrolysis 
of the substrate was accompanied by photometric reading 
A405 nm of p-nitroaniline released in a SpectroMax® ABS Plus 
microplate reader, using software (SoftMax Pro Software 
7.1.2). The experiments were carried out in triplicate.

Thromboelastometric Assays with Human 
Plasma Samples

Fibrin formation in platelet poor plasma (PPP) 
samples in presence or absence of mAb anti-SVSP (16 µg) 
were recorded in a computerized ROTEM® four-channel 
system (Pentapharm, Munich, Germany), according to the 
manufacturer’s instructions for intrinsic pathway (INTEM) 
thromboelastometry assays during 60 min (n = 3, each 
experimental group). For evaluation of the possible effect of 
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mAb anti-SVSP as a serine protease inhibitor on the INTEM 
profile, mAb anti-SVSP (16µg) was incubated at the above 
described volume of 60 μL. The clotting time (CT, in seconds, 
represented by the start of the reaction to beginning of the 
clot formation) was analyzed.

Standardization of the Serine Protease Pool 
Mean Coagulant Dose (MCD)

Experimental groups (EG) (n=5 each) were assayed (in 
cups with final volume of 340 µL), according to the following 
protocol: (EG1): addition of 60 μL of saline solution at 0.9% 
to 260 μL human plasma before calcification with 20 µL of 
CaCl2 (0. 2M) (negative control); (EG2): 5 µL of the activator 
aPTT clot reagent (an activator of coagulation) plus 50 μL 
of saline solution at 0.9% to 260 μL human plasma before 
calcification with 20 µL of CaCl2 (0. 2M) (positive control) 
and (EG3) different doses of the serine protease pool 
(SVSPs) solubilized in the 60 µL of saline solution at 0.9% 
to 260 μL human plasma before calcification with 20 µL of 
CaCl2 (0. 2M) (assay test), for determination of its mean 
coagulant dose (MCD). The MCD of the serine protease 
pool was considered as that amount that shortens the CT 
parameter of the negative control group to an interval 
situated between the minimum and maximum coagulant 

response.

Statistical Analysis

The significance of the statistical difference between 
the experimental data obtained in the in vitro experiments 
was analyzed using the GraphPad Prism program (version 
8.0 Prism, GraphPad). P values < 0.05 were considered 
statistically significant. The results were expressed as the 
mean ± standard error of the mean (SEM). For values of 
ROTEM, it was used the ANOVA, Newman-Keus post-test for 
analyzing the difference in relation to control values.

Results and Discussion

Isolation and Characterization of Bothrops 
Jararaca and B. atrox Venoms (BjV, BaV) Serine 
Proteases

The fractionation of B. jararaca and B. atrox venoms was 
performed by in two consecutive chromatographic process. 
To each venom, in the first, 10 mg of BjV and 15 mg of BaV 
was separately applied to Benzamidine Sepharose 6B affinity 
column, resulting in three fractions, denominated: F1, F2 and 
SP-BjV or SP-BaV (Figures 1A & 1B).

Source: author (2023).
Figure 1: Affinity chromatography for BjV and BaV purification.

Figures 1A & 1B Chromatography of Bothrops jararaca 
and Bothrops atrox venom in Benzamidine Sepharose 6B 

affinity column. In both purification processes, the column 
was previously equilibrated with Tris buffer 50 mM pH 7.6, 
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followed by elution with Tris 50 mM NaCl 500 mM pH 7.6 
and Glycine 20 mM pH 3.2 under flow of 1.0 mL/min. Each 
chromatogram shows three fractions; F1; F2 and the fraction 
containing the SVSPs from each venom, denominated as SP-
BjV and SP-BaV.

Analysis of Fibrinogen Cleavage by SVSPs

The coagulopathy by fibrinogen consumption is a major 
systemic hemostatic disturbance commonly observed in 
patients envenomed by Bothrops snakebites. During the 
envenomation there is the action of toxins, as thrombin-
like enzymes (TLEs) that also recognize and cleave human 
fibrinogen [41]. Therefore, in this set of the experiments, we 
evaluated whether the murine mAb anti-SVSP 6AD2-G5 is 
able to inhibit the activity of bothropic serine proteases on 

human fibrinogen.

As observed in Figures 2A & 2B, SP-BaV and SP-BjV 
(0.6 μg for both) were able to efficiently cleave α and β 
chains of human fibrinogen. Despite the high proteolytic 
activity observed in electrophoresis, lower fibrinogen 
degradation and higher α and β chains preservation are 
apparently observed, especially for SP-BaV, when pretreated 
with increasing concentrations of the specific monoclonal 
antibody. This degradation pattern changes seen in Figure 2A 
is correlated and is in concordance with the kinetic results 
obtained using the thrombin-like enzymes’ chromogenic 
substrate (Figure 3) and by thromboelastometry analysis 
(Table 1), also showing a tendency for enzymatic inhibition, 
in the presence of the monoclonal antibody.

 Source: author (2023).
Figure 2: Analysis of fibrinogen cleavage by SVSPs.

Figures 2A & 2B 10% SDS-PAGE gel stained with Coomassie. (A) pool SP-BaV and (B) pool SP-BjV. 1: Low molecular weight 
standard; 2: Fibrinogen Control [16µg]; 3: SP-BaV (A) or SP-BjV (B) [0,6µg]; 4: mAb [16µg]; 5: Fibrinogen [16µg]+ P-BaV (A) or 
SP-BjV (B) [0,6µg]; 6: Fibrinogen [16µg] + SP-BaV (A) or SP-BjV (B) [0,6µg] + mAb [4µg]; 7: Fibrinogen [16µg]+ SP-BaV (A) or 
SP-BjV (B) [0,6µg] + mAb [8µg]; 8: Fibrinogen [16µg]+ SP-BaV (A) or SP-BjV (B) [0,6µg] + mAb [16µg]

SVSPs Catalytic Activity and mAb Anti SVSPs 
Inhibitory Action

To better evaluate the inhibitory activity of this mAb 
on the catalytic activity of SP-BjV and SP-BaV fractions, the 
residual activity of these fractions was evaluated on the 
chromogenic substrate, H-D-Phe-Pip-Arg-pNA-2HCl (S-
2238), specific to thrombin-like enzymes, in the presence of 
different mAb concentrations. The results show no inhibition 
of the SP-BjV catalytic action by mAb anti-SVSP 5AD2-G5 
(Figure 3A).

On the other hand, a significant inhibition in the SP-
BaV activity by mAb anti-SVSP (52.3 %) was observed. 
However, even at higher mAb anti-SVSPs concentrations, 

there is no total inhibition of SP-BaV catalytic action (Figure 
3B). Kuniyoshi et al., using selective substrates for SVSPs of 
Bothrops jararaca demonstrated that bothropic antivenom 
does not fully inhibit the catalytic action of these toxins [39].

Gutiérrez et al. demonstrated by antivenomics studies 
that B. asper serine proteases are also partially neutralized 
and have variable immunoreactivity [42]. In concordance, 
Patra et al., have shown that the enzymatic activities of mid 
and low molecular weight proteins such as, PLA2 and SVSP, 
were least neutralized by specific polyclonal antivenom. 
Interestingly, the SVSPs were well recognized by antivenom, 
suggesting that the catalytic sites of the enzymes may be poor 
immunogens [43]. These results reinforce the importance of 
molecules that inhibit the catalytic action of these enzymes.
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Figure 3: Catalytic activity of SP-BjV and SP-BaV and inhibitory action of mAb anti-SVSPs.

Figure 3 the inhibition percentage value was determined 
using a specific substrate for thrombin like enzymes, as 
described in Methods. The experiments were performed in 
triplicate and the standard deviations of inhibition percentage 
value did not exceed 10%. Thromboelastometric assays 
with human plasma samples. It is known that bothropic 
venoms cause hemostatic disturbances Santoro ML, et al. 
[31] and our group in the previous work demonstrated 
in vivo by decrease of the diameter of hemorrhagic halo 
that the addition of selective peptide inhibitors of SVSPs 
to the bothropic antivenom improves the efficacy of the 

treatment of local hemorrhage and the coagulopathy caused 
by Bothrops jararaca envenomation [44]. So, in this set of 
experiments, using human plasma samples, we aimed to 
analyze whether the mAb anti-SVSP 5AD2-G5 is able to 
restore the clotting time and, consequently, decrease the 
fibrinogen consumption.

So, in this set of experiments, using human plasma 
samples, we aimed to analyze whether the mAb anti-SVSP 
5AD2-G5 is able to restore the clotting time and, consequently, 
decrease the fibrinogen consumption.

Human Pooled Plasma CT (s) % inhibition in relation to MCD Control 
Positive Control 362±19 ---
Negative Control 1065±63 ---

MCD - SP-BjV (2ug) 516±15  
MCD SP-BjV (2μg) + mAb (16μg) 523±26 No

MCD - SP-BaV (1μg) 320±16  
MCD - SP-BaV (2μg) + mAb (16μg) 495±14 54,68%

Abbreviations: INTEM (Intrinsic Pathway Thromboelastometry); CT: Clotting Time; MCD: Mean Coagulant dose Data are 
Expressed as mean ± SEM (n = 3).
Table 1: Thromboelastometric parameters of INTEM profiles of human pooled plasma.

As observed in the Table 01, the mAb anti-SVSP 5AD2-G5, 
in concordance to previous results obtained by Petretski et 
al., the Bothrops jararaca fibrinogenolytic action was not 
inhibited by this mAb. However, in agreement with these 
authors and ours results from the kinetic assays substrate, 
a significant inhibition (around 50%) by mAb anti-SVSP was 
observed on SP-BaV activity on clotting time [45].

These results are very promising, especially in relation 
to the treatment of envenomation caused by B. atrox 
bites, that despite the efficacy of bothropic antivenom, 
quantitative differences in the effective doses are required, 
when compared to those used to neutralize venoms of the 
immunizing mixtures [46-48].

In conclusion, this specific monoclonal antibody 
(5AD2-G5) inhibits the catalytic action of the serine proteases 
from Bothrops atrox venom on human fibrinogen, decreasing 
the fibrinogen consumption during the envenomation, 
commonly observed in bothropic accidents. The development 
of fully recombinant anti-toxins monoclonal antibodies 
could help with the prognosis of these accidents, mostly by 
reducing the severe coagulopathy.
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