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Abstract

A major survival issue affecting wildlife ecosystems globally is climate change. Climate change fluctuations impact not only 
atmospheric weather, but also river watersheds and oceans, the health of animal populations, and the health of ecosystems as 
a whole. Arctic wildlife sentinels can be used as a proxy to monitor both ecosystem health and the health of Arctic subsistence 
users. In addition to a changing climate, the Arctic is a region of increased activity by the international mining industry. This 
One Health based literature approach integrates principles of environmental science, forensics, anthropology, physiology and 
geology, which will focus on toxicology (Hg) and feeding ecology (stable isotopes of δ13C and δ15N) of key terrestrial and 
marine mammal sentinel species. In the context of climate change, a forensic approach suggests a paleohealth (mercury) and 
paleodietary (isotopes) indicators in various animal tissues from museum samples as a baseline for future assessments of the 
impact of metals in food webs. 
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Introduction

One Health

In the far North, ecosystems and indigenous peoples 
are impacted by climate change. These impacts include, 
but are not limited to, significant health problems from the 
persistent organic pollutants, heavy metal accumulation and 
significant social and cultural changes related to survival [1].

Understanding this mosaic of processes both globally and 
locally requires an understanding of the array of toxicological 
processes for both terrestrial and marine ecosystems as 
well as the people living in this changing environment [2]. 
The extraordinary closeness of rural people to their land, 

which is absent in metropolitan communities, necessitates 
the interdisciplinary perspective of One Health in which 
contaminates impact the evolutionary healthy processes 
between animals, plants and the human social system 
[2,3]. This One Health approach focuses on climate change, 
toxicants, and stable isotope studies for both terrestrial and 
marine mammals living in the Arctic regions.

As a One Health interdisciplinary approach develops 
diverse data sets, interpretation becomes essential about 
the key health interactions between animals, environments 
and humans. One Health collaborations among experts 
can improve research design and implement international 
policies and programs to help insure an optimal future for 
animals, ecosystems and humans [4-9].
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Climate Change

One of the major global issues affecting ecosystems is 
climate change. Global warming not only impacts terrestrial 
and marine populations, but also the physical environment 
which impacts ecosystem services [1,10]. One high risk area 
that is being impacted is the Arctic where ecosystems are 
experiencing quicker and greater warming occurrences [11-
18]. The Alaskan Arctic and subarctic ecosystems, with their 
changing weather patterns due to climate changes as well as 
the increase of industrialization and mining activities release 
contaminants into the environment. The concentration 
of mercury (Hg) in animal’s food sources [4,7,19-22] is 
increasing. These types of changes will have an impact on 
the health of specific species [23]. For example, mercury 
bioaccumulation in pristine tundra vegetation would have a 
significant negative effect on the health of Arctic biota [20]. 
Whereas, if temporal changes and sudden shifts are observed 
in stable isotope (δ13C and δ15N) values, this would signify 
that adaptation behavior is required, such as new locations 
for foraging or trophic changes [24,25].

In addition to Alaska, another Arctic region is the 
Svalbard Archipelago in Norway. This area has become 
a noteworthy location for contaminants emitted in the 
Northern Hemisphere [10]. These contaminants arrive in 
the form of volcanic activities, soil dusts, sea salt aerosols 
and transport of anthropogenic emissions from lower 
latitude power plants. The anthropogenic emissions of 
contaminants seems to account for the greatest amount of 
pollutants [26,27]. This is a global problem that threatens 
the Arctic ecosystems due to long range transportation and 
accumulation of contaminants [27,28]. The tundra stores 
the atmospheric Hg disposition in permafrost and over time 
it migrates to the Arctic Ocean [29]. It has been found that 
about 70% of atmospheric Hg disposition occurs through 
gaseous elemental mercury that is initially taken up by the 
soil and vegetation [20,29,30].

A study conducted on Hg at the Toolik Field Station in 
Alaska was performed by measuring Hg in the atmosphere, 
soil pore air, and interstitial snow air, then characterizing the 
flux of Hg in the tundra ecosystems [29,31,32]. This study 
indicated that the uptake of Hg by ground vegetation of the 
tundra played the commanding role in the Hg cycling. For 
example, it was observed that lichen and moss accounts for 
half of tundra biomass and had high concentrations of Hg [20]. 
This absorption of Arctic tundra Hg will be continuing due to 
the ongoing greening trend and the warming associated with 
climate change [21,29]. With the soil temperatures rising, 
leading to permafrost thawing, the Alaskan Arctic has an 
increased risk of remobilizing higher amounts of stored Hg 
[33,34].

MacDonald and colleagues [35] reviewed the ecological 
effects of global climate change using Hg and persistent 
organic pollutants (POPs) pathways and their exposure 
in Arctic marine ecosystems. The exposure pathways of 
transported chemicals is detrimental to the overall health of 
terrestrial and marine wildlife in the Arctic. A transportation 
of this kind can present toxins to an otherwise healthy 
wildlife and rural human populations [1,7,23,36-39] as the 
climate changes, exposure is predicted to increase.

A prediction associated with a warming climate proposes 
that an increased precipitation at high latitudes will cause 
sea level rise and seasonal flooding [1,40]. This fresh water 
discharge has the potential for the introduction of river-
borne pollutants into Arctic marine ecosystems [41].

The appearance of infectious diseases in the polar 
regions has also been a factor related to climate change 
[36,42], indicated by changes in Arctic species composition 
and the transportation of pathogens [43]. The survival rate 
of infected animals during warmer temperature winters will 
increase the risk from pathogens and metals like mercury 
to marine mammals, with eventual transmission to humans 
[44-47].

Sea ice has also been decreasing for several decades (i.e. 
1993 to now) in the Arctic Ocean due to climate warming 
[18,36,48-55]. Because of the receding sea ice, there are 
direct and indirect impacts on the seasonal distributions of 
food, the patterns of migration over geographic ranges and 
the nutritional stress on marine mammals [16,18,36,56,57]. 
Climate warming trends also affect the Arctic by decreasing 
sea ice thickness [53,54,58]. This change in sea ice thickness 
affects species that rely on the presence of sea ice for pupping 
and molting [59,60].

River watersheds play a key role in ecosystems as well 
as providing benefits in human civilizations. These river 
sheds are intrinsic to physical and biogeochemical cycles 
of aquatic biota as well as transportation waterways [1]. 
With the predicted change in climate, riversheds have the 
potential to change. For example, Hg is distributed across 
landscapes before it enters the ocean by a rise in river 
water levels [1,18,61]. Understanding the functions of less 
structured watersheds can be used as a barometer of the 
health of ecosystems and need an interdisciplinary research 
approach [1]. One way to monitor the health of watersheds 
is using wildlife to achieve insights into shifting stresses 
caused by Hg as well as industrial development [62-64]. 
Similarly, in marine ecosystems, the baseline δ13C and δ15N 
values will vary from offshore to inshore gradients as well 
as latitudinally [25]. Distinct spatial values will be identified 
(i.e. isoscape). These isoscapes can then be used to track 
movements and trophic interactions of species [65-68].

https://medwinpublishers.com/ACT/
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The complex Hg cycle in the Arctic, e.g. remobilization 
of Hg stored in tundra, which is impacted by climate change, 
is a model that should be expanded to other toxic metals, 
including the rare earth elements. An urgency to monitor 
metal concentrations in precipitation, air, bodies of water, 
soils and δ13C and δ15N levels in food webs will increase the 
knowledge of the impact of global industrial activity, such 
as the production of raw materials. Monitoring will improve 
studies to determine if the patterns observed in different 
regions throughout the world, including the Arctic, will be 
similar across all species as the warming climate continues.

Mercury as a Tracer for Change in Metal 
Distribution

Some elements are seen as more toxic than other 
pollutants [69]. This viewpoint brings together diverse and 
multiple approaches to interpreting how chemicals shape 
humanity’s future [70]. Such viewpoints include, but are 
not limited to, the distribution and movement of chemicals 
related to people, wildlife, and nature, in order to learn and 
understand our ever changing environment.

One element that is of major concern worldwide is 
mercury. It is found in the environment in three forms: 
elemental (metallic), organic (methylmercury (MeHg)) and 
inorganic (mercury salts), where all three forms are toxic 
[71-73]. Globally, mercury is a pollutant that affects both 
ecosystem and human health [21,72,74-76] and is released 
into the environment by both anthropogenic and natural 
sources. The aim of the Minamata Convention on Mercury 
in August 2017, was for the reduction of global emissions to 
protect the environment and human health; as a result, it was 
approved by 91 countries [73]. Because of this convention, 
Hg needs to be continually monitored in the environment 
to determine if new measurements set by this treaty will 
reduce the impact of Hg on marine food webs in the future.

The atmosphere is the most important pathway of 
mercury deposition for redistribution to both the terrestrial 
and marine ecosystems [37,74]. As anthropogenic elemental 
mercury vapor is transported via air currents from industrial 
activities, such as gold mining or coal-fired power stations, 
it accumulates in the animal’s respiratory system and/or 
on the food they ingest [77,78]. Whereas natural occurring 
mercury dwells in the atmosphere for about one year and 
then is deposited on the Earth’s surface [72,74,76,79]. For 
example, when permafrost and glaciers thaw in the Arctic, 
Hg is released into the environment [34,80,81]. How Hg is 
released into the Arctic environment is by a phenomenon 
called a polar sunrise during the springtime [82]. During 
this polar sunrise is when Hg in the atmosphere mixes 
with the lower ozone layer causing the Hg to be deposited 
onto snow packs at an accelerated rate [82,83]. Then in the 

summer, when the snow melts, the Hg is released and found 
on soil and foliage, which can impact the health of wildlife 
through trophic level accumulation [1,71,82]. In addition, 
the terrestrial and marine ecosystems often show a higher 
accumulation of different compounds such as HgCl2, CH3Hg in 
their food webs [22,84]. It is these forms of Hg that are a key 
benchmark for research. By understanding the mechanisms 
of mercury distribution, we can then address the metals 
effecting the diets of Arctic wildlife and the local environment 
in order to keep a healthy Arctic ecosystem [21].

Another effect of global warming is the quick hardening 
of small snow layers during the winter. This hardening of 
snow layers, called snow-pack, produces changes in ice 
properties. This change called ground icing, in turn, effects 
the vegetation caught under this hard ice layer [85,86]. These 
changes in weather can create long term affects that impact 
the condition of vegetation, which in turn affects wildlife 
foraging profile and nutritional status [10]. For example, the 
ungulates in Norway are restricted in their food availability 
during ground icing which is caused by overgrazing [87]. 
This overgrazing causes the ungulates to increase their 
foraging areas, which causes an increase in environmental 
imprints. By increasing foraging areas, the ungulates ingest 
more undesirable food sources, e.g. goose droppings or algae 
from marine sources [88,89].

In aquatic ecosystems, mercury is directly deposited 
via snow, rain and by soil runoffs into aquatic ecosystems 
[72,73]. It is in these aquatic ecosystems where mercury, 
Hg, transforms into methylmercury, CH3Hg, biomagnifying 
through food webs. The marine fish and mammal’s health is 
impacted by the consumption of CH3Hg contaminated foods, 
which increases the trophic level transfers [5,21,39,74]. This, 
in turn, affects the Indigenous Arctic populations, especially 
those who rely on seafood as a major part of their diet, 
where they are exposed to CH3Hg impacting their health 
[1,22,52,74,90]. These Hg cycles of deposition continues to 
increase the toxic load on a regional scale.

Hg as a trace element can bioaccumulate and biomagnify 
along food chains [73,76,91,92]. The mercury methylation 
is by a natural bacterial process taking place in aquatic 
sediments [93]. The Arctic fish and marine mammals, 
specifically those at the top of the food web, will have high Hg 
burdens [92]. Lamborg and colleagues [94] estimated that 
the Hg burden in marine environments have tripled since 
the pre-industrial period. In addition, Dietz and colleagues 
[95] have estimated a 14-fold increase in Hg concentration 
in polar bear hair from Greenland between 1300 years ago 
and present.

Lavoie and colleagues [96] found bio-magnification rates 
to be approximately 6.0 ± 3.7 times for each trophic level in 

https://medwinpublishers.com/ACT/


Advances in Clinical Toxicology4

Dainowski BH and Duffy LK. Monitoring the Health of Wildlife and their Ecosystems in the 
Arctic: Hg Toxicology and Stable Isotopes. Adv Clin Toxicol 2022, 7(1): 000233.

Copyright©  Dainowski BH and Duffy LK.

Arctic marine food webs. The tropical marine food webs were 
increased only 5.4 times at each trophic level [97]. The MeHg 
is transferred through the food web chain in fish more than 
other forms of Hg, similar to the way it is absorbed into fatty 
tissues [91,73,76]. In some tissues, it slowly metabolizes to 
inorganic Hg (HgCI2) [98]. The MeHg moves to the kidney, 
liver, spleen and eventually travels to the brain and muscles 
[99]. However, in the vertebrate gastrointestinal tract, 
inorganic Hg is weakly absorbed and leaves the body rapidly 
in urine and feces [100]. Evans and colleagues [101] also 
reported that MeHg is slowly eliminated from the body with 
a half-life of 10 to 15 days depending on the organ affected.

Research has shown that the patterns of Alaskan Native 
diets have shifted from a complete subsistence diet in pre-
contact circumpolar populations to it’s current condition 
that includes more “Western” foods for these indigenous 
circumpolar populations [102-105]. Concurrently, terrestrial 
and marine ecosystems have been measuring the impact of 
terrestrial ecosystems Hg cycling by toxicants over the last 
century, which led to the Minamata Convention. This global 
cycling of Hg affects not only the health of terrestrial and 
marine biota, but has a negative affect on human health. 
Monitoring is not only important because of the atmospheric 
Hg sink strength and it’s impact on Polar ecosystems, but also 
how quickly Hg is transferred from these ecosystems to Hg 
found in foods for human consumption. This has been shown 
in the Polar environment and how it has been impacted by 
both climate shifts and Asian industrial development [106].

When Hg is recirculated back into the atmosphere [21] 
via air and ocean currents, it causes the toxins to migrate to 
the poles. However, most of the remediation focus is on the 
more populated areas at lower latitudes. Whereas, the toxic 
effects from Hg circulating in the Arctic environment needs 
increased monitoring in order to assess the current and 
future health impacts (e.g. infectious and zoonotic diseases) 
on terrestrial and marine ecosystem.

Stable Isotopes

In order to properly assess the effect of global climate 
changes on diet and movements of terrestrial animals and 
marine mammals, the ratio of the stable isotopes of carbon 
and nitrogen values are applied [18,25,107-113]. The stable 
nitrogen isotope (15N/14N) has been used to identify food 
web trophic structures, i.e. the relationship of diet type to 
the ecosystem in which organisms live [1,52,112,114-118]. 
Nitrogen isotope values are used to compare trophic levels 
[107,112,119-124]. These trophic levels are described by 
Trites [125] as level 1-Algae and phytoplankton, level 2- 
herbivores and detritivores and levels 3-5 carnivores and 
omnivores including marine mammals; where each level 
is determined by what the animal consumes. In a paper by 

Hoondert and colleagues [113], they state the trophic level 
characterization of ecological communities should include 
one of three objectives: 1, to define the trophic patterns 
associations within an ecosystem’s community, 2, what 
components are affecting the grouping of these ecosystems, 
and 3, what are the pathways of nutrients, energy, and 
contaminants these animals are exposed to in specific 
ecosystems [126].

Stable isotope studies traditionally trace pathways of 
organic matter using δ13C and δ15N [127]. Different stable 
isotope ratios, (i.e.13C/12C), also arise in the photosynthetic 
pathways of C3 and C4 plants [128-130]. In Western and Arctic 
Alaska, the native vegetation is exclusively composed of C3 
plants [131,132]. There are some native C4 plants that are 
rare in Alaska, which include a few wetland rushes (Juncus), 
spikerushes (Eleocharis), and beaked sedge (Rhyncospora) 
as well as some coastal grasses such as saltgrass (Distichlis) 
[133].

These stable carbon isotopes are reflective of naturally 
occurring isotope values in animals’ diets and reflective 
of animals’ movement patterns [134-136]. This has been 
established in various studies of stable isotope ratios 
reflecting dietary sources from coastal, terrestrial, benthic 
and pelagic environments [137-140]. For example, with the 
sea ice shifting due to climate warming, the biodiversity and 
distribution of marine mammals may shift toward the poles 
[141]. Also, coastal terrestrial animals that feed on fish can 
leave a 15N signal in coastal plants [142]. In regard to human 
movement patterns, distinguishing Arctic wild foods from 
processed store-bought foods can be established because of 
the difference in carbon isotopes [112,122,136,143,144].

In Arctic marine systems a high spatiotemporal intra-
species variability in trophic level is exhibited, e.g. a system 
driven by seasonal fluctuations in light and temperature 
[145]. Changing peaks in abundance of primary producers 
and declining prey availability due to loss of sea ice in summer, 
lead to these changing trophic interactions among species 
in high-latitude marine environments; thus, affecting the 
trophic position and contaminant level of species [146,147]. 
One such marine mammal that has been used to monitor 
changes in trophic positions from migration patterns is that 
of whales [148].

Stable isotopes of δ13C and δ15N can also be connected to 
toxins such as Hg during climate changes on ecosystems. As 
this increased warming phenomena continues in the Arctic, 
the weather will continue to stress the Arctic ecosystems and 
lead to both vegetation damage and the decline of wildlife 
health [39,149]. During climate changes, precipitation moves 
Hg from the atmosphere cycling it back into the oceans and 
rivers and to the soils exposing more Arctic organisms to Hg 
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loads. Then as the climate warms, the sea ice cover decreases, 
which in turn increases the Hg levels in the atmosphere 
[39,150,151]. This melting of ice and snow releases an 
increased amount of Hg into the river watersheds which then 
leads to an uptake in Hg in food webs. 

It is these applications of stable isotope values 
which provide information regarding the impact climate 
change has in informing or the distribution of species 
[1,107,111,113,152]. Additionally, stable isotopes not only 
informs about animals, but all historical indigenous human 
movement patterns in search for sustainable food supply 
[112,153,154].

Two Important Tissues Needed In Wildlife 
Monitoring Studies

As a consequence of climate change over the last three 
decades in northern latitudes, Alaskan wildlife and their 
ecosystems are experiencing the impact of global warming 
[155]. The larger animals in a region, such as moose, 
muskoxen and caribou, are experiencing conflicts with timing 
of resource availability and migration patterns, Funck and 
colleagues [19,24,156-158] have noted changes in caribou 
migration patterns due to warmer summers and winters. 
Additionally, elevated amounts of Hg have been observed 
in Arctic marine mammals such as the polar bear, seals, 
and whales, where Hg has threatened the health of these 
ecosystems [22,91,159]. Because these factors effect the 
lifestyle of both terrestrial and marine wildlife, innovative 
approaches in research need to be used. Specifically, there 
are two tissues that stand out amongst many others and 
are lacking in the literature, that is, bone and renal cortex 
and medulla. The more innovative approaches are used on 
tissues, the more essential information can be derived. In 
turn, this information can be beneficial in acquiring a more 
in-depth knowledge about the health of terrestrial and 
marine wildlife.

Role of Bone

Bone has not been widely used in research, mainly 
archival bones, yet provides valuable information [160]. Bone 
can be easily sampled and cataloged, thus providing a unique 
way to monitor the pathway of pollutants and diets from 
museum samples for past historical patterns. In this regard, 
bone can help to understand changes in the behavioral and 
health patterns in wildlife due to warming climate changes 
around the world, specifically the Arctic.

The main components which make up bone are 
hydroxyapatite (mineral) and collagen (organic) [161]. 
Bone is unique in the way it remodels itself throughout 
life [162,163]. However, the remodeling rate is dependent 

upon an animal’s physiological factors and their age [164]. 
The bone collagen is used in stable isotope studies to infer 
the diet intake during recent years of life [112,165]. Bone 
collagen and keratinized tissues are useful tools in under- 
standing migration patterns during periods of rapid climate 
changes, in both terrestrial and marine wildlife as each 
species will consume more than one kind of prey, with each 
prey uptake energy and nutrients from different sources in 
their particular ecosystem [52,148,166].

Diagenesis is the breakdown of bone and its interaction 
with the local physical, chemical and biological environment 
over time [167]. These processes modify the bone’s original 
structural and chemical properties and can either preserve 
or destroy the bone. It is the physical factors such as soil and 
climate, and chemical factors such as deterioration of the 
organic and mineral phases, as well as biological factors such 
as alterations that take place on the bone itself (when exposed 
to elements or in a burial context), that play a important 
factor in the diagenesis process [168]. Because bones are 
not in equilibrium with the soil solution of a particular 
environment, they undergo various chemical deteriorations 
[167,169]. When bone is exposed to moist environmental 
conditions, a key agent of change is diagenesis. It’s altered 
states are in the proportions of the inorganic components 
(e.g. calcium, hydroxyapatite, magnesium) with the organic 
component (e.g. collagen). Other changes in bone take place 
and need to be considered. This is because various types of 
soil components are absorbed onto the bone surface and 
cause the components of the bone to leach out [168,170].

It has been shown in various studies that bone can also 
be used to predict toxicant levels in soft tissue from Arctic 
animals [64,171-173]. Also, in bone mineral, toxicants are 
actively absorbed and then released during bone remodeling 
[174]. Toxicants, such as Hg has a direct effect on the bone 
itself as well as an underlying effect on other organ systems 
when it is released. Bone collagen has a slow turnover rate 
[175], and was used in stable isotope research to infer the 
lifetime of a red fox’s diet [64]. We are fortunate to have 
some studies describing techniques for the preservation of 
bone, classification of soil environment, and detection of the 
factors in the environment which affect the preservation of 
bone [169,176].

Role of Renal Cortex and Medulla

The kidney is widely used to monitor contaminant levels 
in Arctic animals. In the bulk of the literature, the kidney is 
digested whole (both cortex and medulla together) [177-
181]. However, one study used an innovation approach of 
separating the renal cortex from the kidney medulla and 
analyzing each component of the kidney individually [182]. 
It is important to note, and to consider in future studies, that 
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different structures in the kidney perform different functions. 
Therefore, these different structures can accumulate 
toxicants at different rates and amounts [183,184].

Terrestrial Wildlife Studies

An important process for the animal community 
structure and their ecological relationships in an ecosystem 
is that of competition [10,185]. Researchers have used the 
feeding ecology knowledge of Hg concentrations to indicate 
what small mammals, birds and/or fish as omnivores to 
know what they are consuming. This diet knowledge leads 
to an understanding of the overall health of these animal 
populations [64,91]. In addition, studies have shown how 
monitoring the diet differences between trophic levels in 
wildlife, using δ13C and δ15N diet, can be used as biomarkers 
for regional availability of foods during climate change 
fluctuations.

Mercury

In the Arctic, foxes are similar to dogs and coyotes as they 
are also omnivores [71]. Therefore, red foxes (Vulpes vulpes) 
were used as a sentinel species to provide information about 
Hg concentrations and changes in exposure [64,71]. Working 
together with local trappers in western Alaska, Dainowski 
and colleagues [64] evaluated 65 red fox tissues to see if total 
mercury (THg) concentrations of keratinized tissue, hair, and 
bone could predict total mercury (THg) concentrations in 
skeletal muscle, renal medulla, renal cortex, and liver. They 
reported the keratinized tissue of hair THg concentration had 
a compelling positive correlation with liver, renal medulla, 
renal cortex, and muscle. The THg concentration for males 
and females was reasonably predictive of THg concentration 
in the renal cortex and liver based on R2 values (R2 = 0.61 
and 0.63, respectively). This study also used an innovative 
approach of separating the renal cortex from the medulla 
in the kidney, and analyzing the components individually. 
Their data indicated the cortex had consistently higher THg 
concentration than the medulla (~3:1). The separation of 
this tissue is an important consideration for future research. 
By monitoring the concentration levels in each kidney 
component, a more precise picture of the potential adverse 
effects from Hg can be obtained.

In another study of trapped foxes, Hallanger and 
colleagues [39] from Svalbard, Norway explored temporal 
trends of Hg in 109 Arctic foxes, over 11 trapping seasons 
between 1997-2014. The Arctic fox (Vulpes lagopus) from 
Svalbard, Norway has been shown to have among the 
highest THg concentration levels of any other apex animal 
[186]. This is because the Arctic foxes mainly feed from 
marine carcasses (e.g. seals (Phocidae spp.) in addition to 
their terrestrial animals (e.g. Svalbard reindeer carcasses 

(Rangifer tarandus platyrhynchus [187]. When Hallanger 
and colleagues [39] adjusted their study for sea ice cover, 
consumption of reindeer carcasses, and differences of δ13C, 
they found the THg concentration levels in the liver of the 
Arctic foxes increased by 7.2%. But, Hallanger and colleagues 
[39] found the THg concentration level increased in the ‘raw 
annual trend’ by only 3.5%. They also reported the THg levels 
had up to five-fold variation between trapping seasons. This 
study suggested how sea ice cover and food webs affect 
mercury concentration levels in an important organ, the liver.

Caribou (Rangifer tarandus) are also considered one 
of the main components of the tundra biome [188] in 
northern latitudes, including, Alaska [189]. Caribou and 
reindeer (semidomesticated caribou) diets consist of mainly 
vegetation, which includes lichens, that can accumulate 
contaminants from the atmosphere. Therefore, when caribou 
consume these lichens, they accumulate high concentrations 
of mercury [189]. Duffy and colleagues [189] research 
investigated the total mercury (THg) in the hair of both 
caribou and reindeer from the Seward Peninsula, Alaska. 
The Seward Peninsula is where total mercury (THg) has 
been defined as the aggregate of different forms of mercury 
that is found in tissues of terrestrial animals. They compared 
differences between a free-range diet and a pollock-based 
fishmeal diet. The freeranging reindeer’s average THg 
concentrations were 55.3ng/g; whereas, the fishmeal fed 
reindeer was 19ng/g. This research was able to show that 
the free-ranging reindeer and caribou feed on a diet of lichen, 
indicating a greater exposure to Hg. On the other hand, Pacyna 
and colleagues [10] used hair samples from the Svalbard 
reindeer (Rangifer tarandus platyrhynchus) to determine Hg 
concentration levels. Their research found very low levels 
which agreed with other published literature of lichen and 
moss in Svalbard. These two studies have clearly shown that 
different ecosystems in the northern latitude tundra biome’s 
are affected differently by climate changes.

Research conducted by Kalisinska and colleagues [76] 
used three mesocarniore species (piscivorous Eurasian 
otter, feral American mink and the invertebrativorous 
European badger of NW Poland) in their respective northern 
ecosystems to determine the THg levels for mercury 
contamination. Their investigation revealed that all three 
mesocarniore species were not significantly different in their 
livers and kidneys for THg. The Hg levels in the liver were 
non-significant between the American mink and Eurasian 
otter. However, THg concentrations were significantly higher 
for roadkill animals than the trapped American minks. Their 
study also indicated that the European badger, who lives in 
the floodplains, bioaccumulated Hg at higher concentration 
levels. Since this badger was from floodplains, Kalisinska 
and colleagues [76] could use this species as a bioindicator 
of mercury soil contamination. Therefore, further studies 
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are needed in order to understand how to optimize not only 
the health of these wildlife animals, but also their specific 
ecosystem.

Stable Isotopes

Stable isotopes are used to provide trophic levels as 
well as the feeding ecology of each species. Nitrogen stable 
isotope (δ15N) analysis is often used for determining relative 
trophic position using a 3-5% increase in δ15N values with 
each trophic step [109,114,190,191]. These increases in 
δ15N values may develop from various diet resources. The 
increases in δ15N will also depend on the tissue turnover 
rates [112,192]. For example, in the liver and plasma of 
blood, the turnover rate is usually in the range of days, 
whereas, in muscle and red blood cells the turnover rate is 
usually several weeks to months [193]. If stomach and scat 
analysis is used for trophic positions, then the prey that was 
consumed, as well as the rate at which digestion takes place, 
should be known [194]. Additionally, the diversity among 
species, the condition of the ecosystem, and the baseline 
species [113] needs to be considered when applying tropic 
positions. The carbon stable isotope analysis (δ13C) is used 
to determine the source of carbon in a food chain, i.e. the 
feeding habits of animals [109]. For example, δ13C is used 
to reconstruct the diets, whether that is animal or plants, of 
a wildlife species. Something worthy to note, and has been 
demonstrated by Trites [125], supporting the strength of 
stable isotope studies is the use of biopsy samples, instead of 
the stipulation to kill an animal.

In the Arctic of western Alaska, research of stable 
isotope ratios of δ15N were used to assess trophic levels and 
δ13C ratios as indicators of regional variability of marine 
vs. terrestrial prey of free-ranging red foxes (Vulpes vulpes) 
[112]. Five tissues (hair, bone, muscle, renal cortex, renal 
medulla, liver) were used for this stable isotope study. This 
study found that hair, bone, muscle, liver, renal cortex and 
medulla tissues of the red fox were isotopically different 
[112]. In addition, Dainowski and colleagues [112] observed 
a correlation between δ15N values and THg concentrations of 
hair. The hair δ15N values varied between 5.00 and 7.00‰, as 
the THg concentrations varied between 1.00 and 3.00 ppm. 
This revealed a link between δ15N and THg, by showing when 
δ15N increases, THg concentrations also increase. Further 
studies in the correlation between δ15N and THg needs to 
be addressed during climate warming in order to assess if 
any health changes of wildlife are taking place in this Arctic 
region.

In the Arctic of Svalbard, Norway, the soil nitrogen pools 
and differences in vegetation have been impacted by climate 
changes and soil moisture during the growing seasons [10]. 
Pacyna and colleagues [10] investigated if diet variations 

could be seen in the hairs of the Svalbard reindeer (Rangifer 
tarandus platyrhynchus), a key species in their region. 
Their research pointed out a high variability of δ15N, which 
suggests the reindeers were consuming vegetation with 
various δ15N values. Because the δ15N values indicated high 
variations in the isotope signatures, this indicates that the 
High Arctic tundra does retain the nitrogen signature that 
has been transported during weather events [195].

Hallanger and colleagues [39], used innovative research 
with their Hg study, by using δ13C as a substitute for both 
terrestrial and marine feeding ecology. They found that the 
δ13C ratios in muscle tissues of Arctic foxes from Svalbard 
Norway mirrored the fall and winter feeding habits and were 
produced by a diet of 1-2 months before death [116]. They 
also found that the δ13C values did explain the increase in THg 
levels and thus can be used a predictor in feeding habits of 
sea ice cover and reindeer carcasses in Arctic fox livers. This 
study also revealed that the Arctic foxes food consumption 
of a marine diet exposed them to higher levels of THg than 
those foxes feeding on a terrestrial diet, and was in line with 
other studies [142,196,197].

Marine Mammal Studies

Environmental pollutants, such as Hg, along with a 
warming climate, threaten marine mammals more so than 
any other mammals in the world [91,92]. Because of these 
impacts on the environment, questions need to be addressed, 
such as: what impact will climate warming have on marine 
mammals in the Arctic, and, what impact will the increase in 
activity of Hg in Arctic waters, where sea ice levels fluctuate, 
have on the health of these marine populations. Research 
needs to continue to monitor, heavy metal (Hg) changes, and 
migration patterns (δ13C and δ15N), in order 1) to observe 
and maintain terrestrial mammals at a nutritive equalibrium 
for optimal health and 2) in order to protect the decline of 
marine populations.

Mercury

A serious issue which impacts both the health of Arctic 
indigenious populations as well as Arctic ecosystems, on a 
global scale, is that of mercury contamination. Once mercury 
leaves the atmosphere and enters a water system it converts 
to methylmercury by the way of bacterial processes. Once 
in the waters, methylmercury is one of the most toxiferous 
admixture that bioaccumulates and biomagnifies at a 
very high rate along the food chain in marine mammal 
ecosystems [91,92]. Therefore, any wildlife animals, fish or 
birds that consume a marine or sea ice based diet may be at 
risk from the toxic MeHg levels, as MeHg is known to cause 
neurochemical, reproductive, and even behavioral changes 
in fauna [198].
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Tilson, Das and colleagues and Roos and colleagues 
[199-201] have defined neurotoxicity as “an adverse change 
in the structure or function of the central and/or peripheral 
nervous system, following the exposure to a chemical, 
physical or biological agent”. It is the loss of neurons and 
gliosis, a variation in the cerebellum, along with, motor and 
sensory defects, which causes behavior changes from high 
amounts of MeHg intake [73]. The neurotoxicity caused from 
MeHg, depends on many factors, such as: 1, the nutritional 
health of the marine mammal populations; 2, the degree of 
exposure; and 3, how each mammal metabolizes and excretes 
the toxin [92].

Another general concern among scientists is that of 
the transfer of MeHg crossing the placenta [202], and 
the resulting Hg concentrations in fetal brains [203]. In a 
systematic study by López-Berenguer [92] MeHg can cross 
the placental barrier of pregnant marine mammals and 
accumulate in the fetal bloodstream; in turn, crossing the 
blood-brain barrier. Their study agreed with Evans and 
colleagues [101] confirming that inorganic Hg and MeHg can 
cross the blood-brain barrier, thus resulting in neurotoxic 
effects in marine mammals. These developmental risks of 
neurotoxicity can affect the future health of generations of 
marine mammals and therefore a high priority is needed to 
study, research and publish on the effects of MeHg in marine 
mammals and in their ecosystem.

The bioaccumulation of MeHg has also been shown to 
increase in Northern latitudes as a result of climate change 
[5,91]. With climate warming, the lower sea ice levels 
facilitate dietary changes associated with higher Hg levels in 
some populations of marine mammals, such as polar bears 
and ringed seals [35].

The adipose tissue and blood from key marine mammal 
species such as polar bears and ringed seals have also been 
analyzed for the purpose of studying spatial and temporal 
trends and human exposures to contaminants in the Arctic 
areas of Greenland, Alaska, and Canada [7]. These studies 
of free-ranging animals suggest high Hg loads in the Arctic, 
which, in turn, creates an immune suppression in which 
the body does not have the ability to respond to infectious 
pathogens [80].

As part of the human exposure of Hg, sea otters (Enhydra 
lutris) are part of the Native Alaskan hunt for subsistence 
foods [204]. As scientists, by working in conjunction with 
these Alaskan hunters, we can use the sea otter to serve 
as a keystone species for the health of their community 
structures, as well as, marine ecosystems [205-208]. Sea 
otters are a good species to study as they live in small home 
areas and their prey, for example, clams (Bivalvia sp.), crabs 
(Dungeness) and sea cucumbers (Holothuroides sp.), is 

sedentary which mirrors the contamination of their local 
environment [204,207,209-212]. A group of researchers 
[204], in Icy Strait, Alaska, worked with the local Alaskan 
Native subsistence hunters and collected four females and 
10 male sea otters. Brown and colleagues [204] analyzed the 
sea otters liver, gonad, brain and kidney tissues to determine 
the THg concentration levels. The THg concentration levels 
in the kidneys and livers were the highest. The average 
concentration of THg in the kidneys of these sea otters were 
30 times greater in comparison to the kidneys of sea otters 
from South-central Alaska [204,210].

Stable Isotopes

Hoondert and colleagues [113] studied the trophic 
levels of Arctic species using pelagic and benthic food webs 
in four areas of the Arctic, including Alaska. They determined 
intra-sample, intra-studies, and inter-region variations of 
trophic levels. A statistically significant difference (P < 0.05) 
in species trophic levels between these areas was reported. 
Their findings supported the nitrogen isotopic baselines 
as established by Carscallen and colleagues [213], where 
the corrected trophic level is 3.17 ± 0.88 and trophic level 
estimates are 3.32 ± 0.79 for Arctic areas. However, they 
did find the variability in trophic levels was higher between 
region verses within one region for both benthic and pelagic 
food webs. Since a single region is not suitable as a baseline 
for the Arctic as a whole, this inter- and intra-study provides 
valuable information showing how one vast area called 
the Arctic, actually constitutes different ecosystems with 
different trophic levels depending on spatial, seasonal and 
temporal influences [113].

Using trophic levels of stable isotope analysis, feeding 
relationships can be established; where one species competes 
for food more than the other species [125]. Trites [125] found 
that pollock and baleen whales overlap in their diets by 73-
86%. Whereas toothed whales compete for food with beaked 
whales and seals, and sea lions compete with large flatfish, 
toothed whales and seals. He found that fish are the largest 
part of competition among these marine mammals. In his 
study of trophic levels, Trites [125] found marine mammals 
to be in the following trophic levels: manatee, level 2, baleen 
whales, level 3.35, sea otters, level 3.45, seals, level 3.95, sea 
lions and fur seals, level 4.03, toothed whales, levels 4.23 and 
at the top of the food chain - polar bears, at level 4.80. His 
study was useful in understanding how many species, like 
fish, can occupy the same, or higher, trophic levels of marine 
mammals, and thus both species are competing with each 
other for the same foodweb.

Stable isotope ratios are also used as biomarkers 
to determine the diet differences among ringed (Phoca 
hispida), bearded (Erignathus barbatus), and harbour (P. 
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vitulina) seals in the Hudson Bay subarctic marine ecosystem 
[107]. Their study revealed that adult bearded seals had 
significantly lower δ15N values in muscle than the pups. 
Conversely, ringed seals pups had lower δ15N values than 
the adults suggesting foraging differences in trophic food 
positions for both species was age specific. On the other hand, 
δ15N values were not significantly different. The δ13C values 
were significantly different for different ages of harbor seals. 
Muscle δ13C values supported the conclusion that bearded 
seals are benthic feeders and are feeding in a separate food 
web from harbor and rings seals. For δ15N, harbor seals had 
the highest levels. This high level indicated their prey came 
from a higher trophic level relative to ringed and bearded 
seals. Young and colleagues [107] concluded that the δ13C 
and δ15N values exhibit the partitioning of resources among, 
and indicated evidence of separation of life stages within, 
these three seal species.

Keratinized tissues are widely used in isotope studies 
due to the non-invasive method in obtaining a sample. 
Crain and colleagues [55] used the keratinized tissue of 
claws from bearded (Erignathus barbatus) and ringed (Pusa 
hispida) seals because their claws can store up to 14 years 
of sequential data. These claws are two tone in color, where 
these colors indicate seasonal diets; for example, the light 
bands are produced in the last spring to last summer and 
dark bands are from early fall to early spring [214,215] . In 
addition, the closer to the tip of the claw represents the age 
of the seal when they were younger [55]. Stable isotopes in 
claws can also reflect the stomach content of bearded and 
ringed seals; and therefore, helpful to evaluate diet and 
reproduction [55]. Connecting these life history parameters 
through time adds to an understanding of the overall biology 
of these marine mammals [55].

Other keratinized tissues used in analyzing nitrogen 
levels, is that of whiskers and baleen. Whiskers and baleen 
can provide an insight into the timing of diet shifts in marine 
mammals, a look into their life history of dietary information 
[125]. By measuring the carbon ratio’s of baleen from the 
bowhead whale, Trites and colleagues [125] were able 
to show that the ocean productivity, and overall carrying 
capacity, was lower and may have had an affect on the 
decrease of northern fur seals, harbor seals, and steller sea 
lions from the Bering Sea in the northern part of the Pacific 
ocean during the 1970’s through 1990’s. This study was 
useful in detecting this rearrangement of the ocean’s capacity 
as well as the diets of marine mammals.

In addition to baleen and whiskers, the whale’s earplugs, 
a plug of waxy material that forms in the ear canal by the 
accumulation of cerumen [25], can also give a comparison 
to the timing of diet from stable isotope analysis. These dark 
and light growth layers (bands of laminae laid down yearly) 

are used to age the baleen whales. Mansouri and colleagues 
[25] reconstructed δ13C and δ15N in earplugs over the lifetime 
of three species of baleen whales: fin (two Balaenoptera 
physalus), blue (two Balaenoptera musculus), and humpback 
(two Megaptera novaeangliae). They reported that the 
earplugs revealed inter and intraspecies differences. These 
differences showed that the mean lifetime δ13C values from 
blues whales was more depleted than fin whales. This dataset 
did provide a lifetime history of changes in foraging locations 
or trophic positions as well as ecosystem changes associated 
with the Suess effect [25]. As the nitrogen levels change in 
the whiskers, baleen and earplug tissues, it can also provide 
both an association with climate change and oceanographic 
occurrences [25,166]. Furthermore, comparison of time 
series stable isotope profiles from baleen whale earplugs, 
with regional and global external datasets such as sea surface 
temperature and chlorophyll concentration, could provide a 
proxy for change in marine productivity in association with 
climate change and oceanographic events [25,166].

Forensic Studies

Investigating forensic wildlife toxicology plays an 
important role in providing information about the biological 
effects of contaminants in the environment worldwide. 
Contaminants may bioaccumulate and biomagnify, entering 
into food webs, thus having adverse effects on both 
wildlife and in many cases, humans. Understanding how 
contaminants move through food webs is imperative for the 
health of the ecosystem, wildlife health, and as a variety of 
terrestrial and marine wildlife serve as subsistence food for 
indigenous populations in the Arctic.

Forensic science uses analytical techniques and 
observations to measure data from wildlife remains. The 
commonly used techniques include toxicology and stable 
isotope analysis of animal bone [216,217]. As the impact 
of mercury (THg) to the environment is continuing, due to 
climate warming, Hg has the ability to build up in organisms 
and food webs, causing a significant negative influence on 
the health of animals. Understanding THg contamination in 
the environment can help prevent it’s ecological effects on 
biological diversity which lead to the damage of ecosystems 
in Arctic regions [1].

Through the study of δ13C and δ15N analysis, time-
series datasets from a variety of animal tissues can 
provide opportunities in reconstructing past ecosystems 
[218,219]. The stable isotopic (δ13C and δ15N) composition 
of animal tissues establish a relationship between diet, 
geographic location and trophic levels in archaeological 
and palaeodietary studies [216,217]. Historical diets and 
trophic status of animals, relative to their prey, can be seen 
through current climate changes [67,220,221]. For example, 

https://medwinpublishers.com/ACT/


Advances in Clinical Toxicology10

Dainowski BH and Duffy LK. Monitoring the Health of Wildlife and their Ecosystems in the 
Arctic: Hg Toxicology and Stable Isotopes. Adv Clin Toxicol 2022, 7(1): 000233.

Copyright©  Dainowski BH and Duffy LK.

how animals, at both the individual and population levels, 
respond to environmental changes through time [134,222-
226].

When studying climate change, Polyak and colleagues 
[227] stated there is a lack of understanding in how Arctic 
ecosystems respond to long periods of climate change. In 
response to this, Szpak and colleagues [16] stated that we 
need to rely on a variety of proxies living in past ecosystems 
to see how wildlife has responded to those changes. It 
is the archaeological record that gives the researcher 
an opportunity to investigate biotic responses, predict a 
historical baseline for current ecosystem changes, and to 
develop education and adaptation strategies [16].

Paleo-Health (Mercury)

One forensic approach for assessing THg concentrations 
over time (millennia) based on museum samples to use this 
information as a foundation for future assessments of THg 
in food webs [52,173], is a study by Dainowski and Duffy 
[173]. They examined two Arctic foxes and three red foxes 
of unknown age and origin, and found the Yukon Territory 
Arctic foxes bone THg concentrations were 0.017 and 0.025 
mg/kg; and the red foxes bone THg concentrations were 
0.010, 0.036 and 0.073 mg/kg. They concluded that total 
mercury (THg) concentrations of bone-based tissues will be 
able to predict the possible THg concentrations in skeletal 
muscle, renal medulla, renal cortex, and liver of that animal 
over different time epochs from a previous study with red 
foxes [64].

Gerlach and colleagues [19] examined THg in caribou 
hair from two houses in a Western Thule archaeological 
settlement in Alaska. The settlement was the Alaskan Native 
community of Derring, which was dated ca. AD 1150 [19]. 
They found it yielded information about the temporal trends 
of human subsistence users exposure to mercury through 
caribou harvest times [19]. The caribou hair THg average 
value was 86ng/g, the same range as indicted in modern 
caribou and reindeer (Rangifer sp.) [19]. The caribou hair 
found in the first home had a THg level of 99.6 ng/g; whereas, 
the caribou hair from the second home had THg levels of 
64.2ng/g. Since lichen is a normal diet for caribou; Gerlach 
and colleagues [19] suggests that the compositional changes 
in the lichen, THg, could account for the variations found in 
the hair mercury values. This type of data gives a good overall 
picture of a historical ecosystem [19].

Bones from marine mammals can be used in stable 
isotope studies to reconstruct ancient food webs by 
identifying the prey in a study of the sea otter’s diet [1,228]. 
Since the habitat of sea otters (Enhydra Lutris) in the Arctic 
waters of Alaska encompasses a long stretch of the Gulf of 

Alaska, Duffy and colleagues [228] compared modern sea 
otter bones for mercury concentrations to that of sea otter 
bones from the early Holocene period. By using both mercury 
and stable isotope studies, they found the diet of these mid-
trophic level modern sea otter bones comprised mainly of a 
benthic diet. However, the ancient bones had higher levels of 
mercury and δ15N values indicating a rising sea level, followed 
by a period in which ice sheets covered large parts of the 
earth [228]. Brinkmann and Rasmussen [229] suggested that 
these sizable increases may be associated with the sea levels 
rising. This rising sea level shifted the mid- trophic level sea 
otter to one of an upper-trophic level during the Holocene 
epoch. Studies like this can then be applied to present day 
climate change concerns in order to maximize the potential 
for a healthy ecosystem and wildlife community.

Paleodiet (Isotopes)

Stable carbon and nitrogen isotope ratios of bone 
collagen are used to establish foraging and movements of 
wildlife and human populations [64,111,112,173,230,231]. 
Assessment of parameters such as collagen yield and 
composition is important to assure the quality of stable 
isotopic data [232]. Measurement of these parameters 
is particularly important for analyses of specimens from 
zooarchaeological assemblages, as poor preservation 
and diagenesis may degrade collagen and impact stable 
isotope ratios [232,233]. Additionally, C/N ratios provide 
information about whether lipids were effectively removed 
from a sample during collagen extraction. Failure to remove 
lipids from bone will result in more negative δ13C values and 
may cause an underestimation of the dietary contributions 
of C4 plants or marine foods [232]. Understanding these 
differences is important as this information might allow 
researchers to exclude any bones from analysis that are 
unlikely to be representative of the whole skeleton.

It is important to note that the skeleton of animals who 
have lived a long life, will only reflect differences in stable 
isotope ratios if their feeding location or diet changes 
considerably [111,114]. Whereas animals having a repetitive 
diet, their stable isotope ratios will stay the same, regardless 
of the turnover rates in bone [115]. The faster or slower 
turnover rates in bone only show differences in stable 
isotopic ratios of the bone collagen if the food consumed 
by the animal changed during their lifetime; either by 
movement, geography or diet [222].

Funck and colleagues [158] examined a steppe bison 
(Bison priscus) skeleton that was excavated in Alaska’s 
Northern Arctic region. Using radiocarbon dating on the 
keratin tissue of the horn, the age was determined to be 
~46,000 ± 1000 cal yr BP. They also employed δ13C and δ15N 
analyses of the same horn keratin to establish a seasonal 
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cycle, and found these values: δ13C - 20.0‰ (±0.6) and δ15N 
- 4.2‰ (±0.1). They concluded that the high δ15N values 
were consistent with that of modern day bison, however, 
as the ecosystem changed, the bison began dispersal and 
faced significant nutritional stress. Whereas, the δ13C value 
was consistent with the bison continuing a diet of C3 plants. 
Funck and colleagues [158] came to the conclusion that the 
past bison might have lived in an interstadial period and 
possibly under stress in harsher winters than what is seen 
today in Northern Alaska’s Arctic. Since this study is signifies 
that climate changes have taken place in the Arctic landscape 
overtime, more forensic studies need to be conducted in order 
to monitor the impact climate change is having on current 
wildlife and food sources for Native Alaskan communities.

Goude and Fontugne [24] studied δ13C and δ15N levels in 
bone collagen of carnivores, omnivores and wild herbivores 
from Liguria in NW Italy and France during the Neolithic 
period. They found significant correlations between latitude 
and δ13C for all groups and latitude and δ15N for wild 
herbivores. The wild herbivores in northern France had 
lower δ13C values and higher δ15N; whereas, the omnivores 
had just the lower δ13C values. Their study added new data 
for the Mediterranean and Western Europe, and the prospect 
of nitrogen to be used in environmental studies during the 
Neolithic period.

Another forensic research approach looked at the paleo-
dietary (isotopes) indicators in preserved museum bone 
collagen of the red (Vulpes vulpes) and Arctic fox (Vulpes 
lagopus), from a Yukon watershed [173]. This study was 
designed to 1, establish information on reconstructing a diet 
using carbon stable isotopes and 2, establish a trophic level 
using nitrogen stable isotopes, for these sentinel species 
[64,112]. Because of the small sample sizes, two red fox 
bones, and three Arctic fox bones, as well as different bones 
(i.e. femur, tibia, mandible) being analyzed, and no indication 
of the sex of the foxes, it had no statistical analysis value. 
Stable isotopes means and standard deviations only gave a 
visual perspective on what a diet might look like. The δ13C 
levels were -21.13 and -21.36‰ for Arctic foxes and -20.05, 
-20.08, and -23.12‰ for red foxes. Their δ15N levels were 5.59 
and 7.22‰ for the Arctic foxes and 6.10, 6.57 and 6.66‰ for 
red foxes. The diet of the two Arctic foxes and two of the red 
foxes from the Yukon Territory Fossil Collection tend toward 
a salmon diet, while the third red fox showed a terrestrial 
mammal diet [173]. The trophic levels indicate these red and 
Arctic foxes from the Yukon Territory are similar to other red 
foxes in the watershed, tending toward a slight salmon diet 
[173].

The NW Coast of Canada was an important area of glacials 
in Late Pleistocene times [118]. Refugia locations identified 
for the survival of species were on the outside limits of the 

Cordilleran Ice Sheet during the Wisconsin glaciation period 
MIS 4-2. The refugee is now NW Canada and SE Alaska [234]. 
Kubiak and colleagues [118] reported on collagen samples 
from an antler fragment dating to the Fraser Glaciation 
(MIS 3). The collagen isotope values revealed Rangier were 
consuming a large amount of seaweed, indicating little 
foraging opportunities during the time period of antler 
growth [118]. The findings of seaweed consumption further 
indicated that Caribou herds were unable to break through 
ice or deep snow drifts to access the resources, especially 
terrestrial resources, needed for their diets [235]. Events 
taking place, like MIS 3, indicate climatic change impacts 
such as hard snow packs due to extreme winds which would 
delay springtime growth [236,237].

Clark, et al. [111] studied the variability of δ13C and 
δ15N in skeletons of Alaska marine mammals to regulate if 
there were any methodical differences in stable isotope 
ratios among the skeletal elements. They used the crania 
and mandibles from 11 Pacific walruses (Odobenus rosmarus 
divergent), 10 adult ringed seals (Pusa hispida), 9 juvenile 
seals (Phoca), and 8 adult sea otters (Enhydra lutris). 
They found no significant differences among the walrus 
cranium/mandible pairs. They did find a greater variability, 
exceeding 1.0‰, across seal and sea otter skeletons. Clark 
and colleagues [111] did remove distal appendicular bones 
(calaneus, metatarsal, and phalanx) as well as the scapula 
and vertebra from the rest of the bones in the sea otter. They 
found by removing these, ‘extra’ sea otter bones from their 
analysis, the overall variability was greatly reduced in all 
three animals. This indicates that individual skeletal bones 
from individual animals can result in different δ13C and δ15N 
levels, which could be based upon bone turnover rates [112] 
and thus should be reported separately. This innovative study 
confirms the study conducted by Newsome and colleagues 
[222] in that turnover rates in bone will reveal different 
stable isotopic ratios in bone collagen as the animal changes 
environments and consuming a different diet during their 
lifetime. This change in diet could confer a change in climate 
during this time causing the marine mammals to change 
their movement patterns.

Szpak and colleagues [16] reported δ13C and δ15N 
values for bone collagen from marine mammals at different 
archaeological sites on Kotzebue Sound, Alaska, dating 
around A.D. 1170-1813. They compared modern mammal 
bone collagen samples from the same areas to determine 
trends over time for sea ice productivity and foraging ecology 
[16]. Between the 19th and 21st centuries, they observed 
significant changes in δ13C and δ15N values of ringed seals. 
The large decline in δ13C suggests a reduction of ice algae and 
organic matter to the benthos in the recent warming trend 
in the Arctic. These events influence the foraging ecology 
of these marine mammals [16], and in other areas, such as 

https://medwinpublishers.com/ACT/


Advances in Clinical Toxicology12

Dainowski BH and Duffy LK. Monitoring the Health of Wildlife and their Ecosystems in the 
Arctic: Hg Toxicology and Stable Isotopes. Adv Clin Toxicol 2022, 7(1): 000233.

Copyright©  Dainowski BH and Duffy LK.

the Bering Sea to the south, and where climate changes are 
moving more towards subarctic conditions [16].

Ecosystems

With climate changes currently affecting ecosystems in 
the Arctic, it is important to establish a baseline for toxicants 
and stable isotopes in order to identify any future changes that 
may affect not only wildlife health but that of the indigenous 
populations. A focused forensic science approach which uses 
observations and analytical techniques provide data for One 
Health programs. The One Health techniques should include 
both toxicology and stable isotope analysis of wildlife tissues 
and the environment. Since the impact of metals on the 
environment is increasing, a significant influence on the 
health of organisms can be expected. Understanding THg 
and other metal contamination in the environment can help 
reduce ecological effects on biological diversity in Arctic 
ecosystems. Stable isotopic studies have shown that the 
δ13C and δ15N composition in animal tissues establishes the 
relationship between diet, geographic location and trophic 
levels in archaeological and palaeodietary studies.

In a study of the Hudson Bay area, a subarctic ecosystem 
that has seen changes in the environment due to the 
warming climate, Young and colleagues [107] noted that 
some species of marine mammals may consume different 
foods, or compete for the same foods, or change their feeding 
areas completely [36]. Their study noted that Hudson Bay 
ice cover is receding. They suggested that the ringed (Phoca 
hispida) and beard seals (Erignathus barbatus), who have 
adapted to the presence of ice cover, may decline in numbers. 
In contrast, the harp (P. groenlandica) and harbour seal (P. 
vitulina) populations would increase [238].

Murray and colleagues [52] conducted a study of 
THg concentrations in marine fish off the Gulf of Alaska 
that spanned the Holocene period. This study related the 
increasing sea level and associated this increase with coastal 
flooding and with Hg bioaccumulation in the marine food 
webs. This suggested the early human coastal populations 
would have been exposed to higher levels of mercury in their 
subsistence food during the Holocene when mercury was 
not linked to industrial mining activities. This increase in 
mercury mobilization was caused by a rise in sea levels due 
to glacial melting which eventually submerged Beringia [52].

Mercury has also been observed in high apex marine 
mammals of the Arctic, the polar bear (Ursus maritimus). The 
potential for long-term accumulation of contaminates can be 
found in their lipids, in the subcutaneous layer (known as 
blubber layer) [91,239,240]. Other marine mammals affected 
are the beluga whales (Delphinapterus leucas), hooded seals 
(Cystophora cristata), pilot whales (Globicephala melas), 

and the toothed whale [91], where they also accumulate 
contaminants like Hg. However, the baleen whales (Mysticeti), 
like the bowhead whale (B. mysticetus) which feed at lower 
trophic levels, do not show the same degree of a high climatic 
imprint [104,148].

Conclusion

Changes continue to occur in the Arctic and is a reality, 
as it has been witnessed by many studies on the wildlife 
populations. The Arctic is changing more rapidly than 
other parts of the world. The warming of the Arctic will 
have consequences worldwide, through precipitation 
patterns causing low changes in sea levels. We expect 
changes in movement patterns and/or loss of wildlife and 
marine mammals. These changes of migration patterns 
and movements, or loss of animals entirely will impact the 
Alaskan Natives who rely on these animals for survival. We 
strongly support that wildlife and marine mammals can 
be used as models to understand the effect of diet changes 
over time. The association between diet (δ13C and δ15N) and 
contaminants (THg) to monitor climate change (temporal 
and regional) can inform on the health of wildlife and marine 
mammals and their ecosystems. Since bone usually survives 
in archaeological and paleontological sites world wide, bone 
has an important role as another valuable tool for monitoring 
metals, while stable isotope applications can reconstruct 
health patterns over time. A One Health approach allows 
scientists, veterinarians, medical professionals, or local 
hunters and fishermen to collaborate together in order to 
develop common goals that will benefit our world. Wildlife 
managers can then move this beyond “monitoring” to data 
based adaptive system management.
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