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Abstract

Persistent organic pollutants including perfluoroalkyl substances (PFAS) are globally ubiquitous contaminants transported 
with sea currents and atmospheric movements, accumulating in the environment, food-chain, animals and humans and possess 
a potential health risk including the immune-, neurobehavioral-, and reproductive systems. The profile and concentrations 
found in humans elicit regional differences that might be related to the countries PFAS use, production, lifestyle, and diet. In the 
Arctic, the PFAS compounds were never produced or used, however, the Arctic Indigenous and northern populations consuming 
traditional diet including marine mammals at the top of the food-chain (e.g., whales, seals, polar bears) are particularly 
exposed to PFAS. This mini review gives a short overview on health effects in the circumpolar Arctic populations and aims to 
compare the PFAS levels in the Arctic with primary focus on the period 2010-20 and relate the levels with the general national 
country populations. As expected, regional concentration and profile differences were found over the circumpolar Arctic with 
the highest level found in Greenland. Moreover, in general the regulated PFAS (perfluorooctane sulfonate, perfluoro-octanoate, 
perfluorohexane sulfonate) tend to decrease and the unregulated PFAS (e.g., perfluorononanoic acid, perfluorodecanoic acid, 
perfluoroundecanoic acid) increases in concentration during this period. Generally, the PFAS levels were higher in men than 
women increasing with age. For most Arctic regions, the PFAS levels were higher compared to the general national country 
populations.
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Introduction

The Circumpolar Arctic include populations from the 
world’s eight northernmost countries: Canada, The United 
States (USA, Alaska), Finland, Denmark (Greenland and the 
Faroe Islands), Iceland, Norway, Sweden, and The Russian 
Federation (Figure 1). The Arctic Monitoring and Assessment 
Programme (AMAP) is one of six Working Groups of the 
Arctic Council (Figure 1). The mandate of AMAP is
i.	 To monitor and assess the status of the Arctic region 

with respect to pollution and climate change;
ii.	 To document levels and trends, pathways, processes, 

and effects on ecosystems and humans, and propose 
actions to reduce associated threats for consideration by 
governments; 

iii.	 To produce sound science-based, policy-relevant 
assessments and public outreach products to inform 
policy and decision-making processes. Since AMAP was 
established in 1991, a series of reports on climate and 
pollution issues of the Arctic have been published in 
https://www.amap.no/.

Persistent organic pollutants (POP), originating from 
industrial processes, are transported along sea currents 
and atmospheric movement, and accumulating in the 
food chain, all over the globe, especially the arctic marine 
food chain [1-3]. POP are resistant to degradation and bio-
accumulate ubiquitously in environment, animals, and 
humans [4-6]. Lipophilic POP, accumulating primarily in 
fatty tissues, include e.g. organochlorine pesticides (OCP), 
polychlorinated biphenyls (PCB), polybrominated biphenyls 
(PBB), and polybrominated diphenyl ethers (PBDE), 
whereas perfluoroalkyl substances (PFAS), including e.g. 
perfluorinated carboxylic acid (PFCA) and perfluorinated 
sulfonic acid (PFSA), are amphiphilic compounds binding 
to blood proteins and stored mainly in internal organs like 
liver, kidney, and fetal tissues [7-10]. Humans are exposed to 
POP mainly through food intake and industrial products e.g., 
cooling fluids, flame retardants, food packing, cook ware, and 
impregnated garments and furniture via dust inhalation or 
for fetuses via placenta transfer [5,11].

In general, the levels of most lipophilic POP are declining 
in the Arctic populations [12,13] due to a combination 
of global regulations, national bans, and the Stockholm 
Convention [14], reducing the level of the contaminants in the 
marine food web. For some Arctic populations, a reduction in 
consumption of traditional food including marine mammals 
such as polar bear, whales, walrus, and seals as well plays a 
role [15-18]. Even though the significant downwards trend of 
lipophilic POP elicit the results of international legislation, it 
must be kept in mind that PFAS and PBDE are still in use and 
only partly regulated [14]. The PFAS group, with half-lives in 
humans between 4 and 10 years, have been used since the 

1950s and already at that time found in fish and humans [19, 
20].

The PFAS group include many substances with a wide 
range of structures and chemical properties [21]; 4000 [22] 
and 8000 [23] have been listed of which at least 600 PFAS 
are currently in use [24]. In 2020, the European Food and 
Safety Authority (EFSA) CONTAM Panel has set the tolerable 
weekly intake for sum of perfluorooctanoic acid (PFOA), 
perfluorononanoic acid (PFNA), perfluorohexanesulfonic 
acid (PFHxS), and perfluorooctane-sulfonic acid (PFOS) to 
4.4 ng/kg body weight per week [25].

The long-term effects of PFAS on the general health status 
are of concern and an overview of research of detrimental 
effects in overall [26,27], in the Greenlandic [7,28] and in 
Arctic populations are given in [29].

In overall, available data provide evidence with certainty 
that PFAS exposure can suppress the human immune 
response affecting reduced response to vaccines, delay 
mammary gland development and lower fetal growth, 
increase risk of thyroid disease and higher cholesterol levels, 
liver damage, kidney and testicular cancer and with lower 
certainty breast cancer [26,30].

Systematic reviews report the effect of POP on 
respiratory and immune systems [31-33]. Several studies in 
the circumpolar Arctic indicate that POP/PFAS exposure has 
a negative effect on the immune defense, in the Arctic and 
globally [34]. In a Faroese cohort, PFAS exposure associated 
with an increased risk of asthma among age 5 years children 
being un-vaccinated against measles, mumps and rubella 
(MMR) but not among 13 years old MMR vaccinated 
children. The authors suggest that the MMR vaccine might 
have the potential to negate the PFAS impairment of the 
immune system [35]. Furthermore, in the same cohort at 
ages 7 and 13 years, serum immunoglobulin E and prick 
tests showed that MMR vaccination associated with a 
reduced risk of developing asthma and allergy indicating a 
protective effect [36]. Furthermore, prenatal PFAS exposure 
showed inverse associations with antibody concentrations 
produced from tetanus and diphtheria vaccines 5 years later, 
and postnatal PFAS exposure associated with lower serum 
concentrations of antibodies against diphtheria and anti-
tetanus concentrations [37,38]. A Greenlandic study reported 
a pro-inflammatory role of exposure to POP, demonstrated 
by the positive association with the markers of inflammation 
YKL-40 and hsCRP [39]. In Greenlandic pregnant women, 
it was observed significantly inverse association between 
several hematological markers (eosinophil, lymphocyte, 
neutrophil, and white blood cells) and POP including PFAS. 
The sumPFAS inversely associated with the monocyte, mean 
corpuscular hemoglobin concentration, plateletcrit, and 

https://medwinpublishers.com/ACT/
https://www.amap.no/


Advances in Clinical Toxicology3

Bonefeld-Jørgensen EC, et al. Perfluoroalkyl Substances in the Circumpolar Arctic and Northern 
Populations. Adv Clin Toxicol 2023, 8(4): 000286.

Copyright©  Bonefeld-Jørgensen EC, et al.

platelet count markers but positively with hematocrit and 
mean erythrocyte corpuscular volume. In overall, the study 
shows that PFAS influence several hematological markers 
suggesting immunosuppressive potential of POP/PFAS 
in Greenlandic Inuit, although further investigations are 
needed [40]. In contrast, environmental contaminants were 
not associated with atopy in Finish and Russian studies [41].

With respect to association between exposure to POP and 
neurological effects, there are evidence of adverse effects on 
child development, but the results are inconsistent, and few 
studies have studied associations with child behavior. Prenatal 
exposure to PFAS appear to have indications of negative effect 
on child behavior. In a Faroese cohort assessing prenatal and 
age 5 and 7 years PFAS exposure, hyperactivity and conduct 
problems were associated with higher PFAS levels at age 
5-7 years [42]. In a Greenlandic cohort, INUENDO, prenatal 
PFAS exposure elicited negative effect on child behavioral 
development and increased hyperactivity [43,44]. In 
another Greenlandic mother-child cohort, ACCEPT, prenatal 
organochlorine pesticide exposure associated significantly 
with problematic child behavior including hyperactivity in 
3–5-year-old children. However, at that age no associations 
were observed between PCB, PFAS, and heavy metals and 
problematic behavior [45]. In a Danish cohort, Danish National 
Birth Cohort (DNBC), prenatal PFAS (e.g. PFNA) exposure 
significantly associated with externalizing behavioral 
difficulties at age 7 and 11 years [46]. Exposure to POP /
PFAS has the potential to interfere, and disrupt endocrine and 
hormonal related systems [7,9,29,47] including sex hormones 
and the thyroid hormones.

Studies indicate that the reproductive system [29,48-50] 
is sensitive to exposure to PFAS that can negatively affect 
fertility [51], and during pregnancy increase miscarriage [52-
54], pre- eclampsia, and blood pressure [55]. PFAS can induce 
endocrine disrupted mediated effects on female reproduction 
parameters and through endocrine disruption being involved 
in related diseases e.g., in breast and thyroid [56]. Exposure 
to PFAS can have negative effects on fetal growth [50,57]. In 
the Greenlandic ACCEPT mother-child cohort, PFOA was 
significantly inversely associated with fetal growth indices, 
whereas positively associated with gestational age was at 
birth. In general, both lipophillic POP and PFAS showed a 
negative effect on fetal growth [58]. In the pregnant ACCEPT 
women’s serum, the lipophilic mixture of POPs has a hormone-
disrupting effect interfering with both the estrogenic and 
androgenic receptor activity, which can have a disruptive 
effect on fetal development and growth [59]. Similarly, it 
was observed an inversely association between the effect of 
the actual serum PFAS mixture in Danish pregnant women 
on estrogen receptor activity and the fetal growth [60]. In 
another Greenlandic cohort INUENDO, the study suggested 
that phthalates, PFAS, and organochlorine pesticides can be 

independently associate with impaired fetal growth [61].

There are some indications that perfluor-
ooctanesulfonamide (PFOSA), a PFOS precursor, might affect 
female fecundability [62,63], and especially for Greenlandic 
women, PFNA was associated with longer time-to-pregnancy 
[64]. Further research is needed to elucidate the effect of 
other PFAS to support the hypotheses.

An overview of the potential threat of exposure to PFAS 
to human spermatozoa was given in a mini review [65] 
and epidemiological studies link the increased exposure 
to PFAS with lowered testosterone and semen quality [66], 
including in Greenlandic men [67]. Although, current studies 
show some inconsistency across studies of effects on female 
fertility and/or male reproduction parameters weakening the 
overall conclusion [68]. There is evidence for mechanisms 
being involved, e.g. semen samples of high-exposure men 
to organochlorines at age 14 years and in adulthood were 
associated with sperm chromosomal disomy, suggesting 
impacts on testicular maturation and function [69]. In high 
exposed Faroese men, serum PCB disrupted the androgen/
estrogen ratio and higher testosterone and sex-hormone-
binding globulin [70]. Moreover, PFOS and PCB associated 
positively with luteinizing hormone and might suggest an 
interference with testosterone syntheses [71]. In addition, 
there is indication that PCB 153 can affect semen mobility 
and that organochlorine compounds and phthalates can 
adversely affect parameters of male reproductive health [70].

Although traditionally, metabolic syndrome (MetS) was 
related to unhealthy lifestyle and diet, studies suggest that 
environmental chemicals can, through endocrine disruption, 
be related to MetS such as increasing the risk of obesity, 
hypertension, and disruption of lipid and glucose metabolism 
[72]. Current knowledge associate PFAS exposure with 
MetS components such as lipid metabolism and obesity 
[72]. Studies in Greenlandic Inuit suggest an association 
between lifestyle and diet and POP/PFAS exposure and MetS 
components such as higher BMI and obesity [7,28,29,73-75] 
. Therefore, metabolic disruption is a topic of interest in the 
Arctic populations and the transition in diet from traditional 
marine food rich in healthy fatty acids to imported food 
with higher content of e.g. carbohydrate [17,76], might be 
involved in the simultaneous increase in diabetes in the 
original population [77,78]. In Greenlandic children aged 
3,5 – 5,5 years old, the prevalence of overweight and obesity 
were higher than previously reported [79], supporting an 
earlier child study (age 5-9 years old, including Greenland) 
on prenatal PFOA and PFOS exposure and increase in waist-
to- height ratio [80]. Maternal exposure to PFOS and PFOA 
associated with increased BMI z-scores and/or overweight/
obesity in Faroese children [81].
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In a review on epidemiologic evidence of the risk of 
PFAS induced cancer, the association with most evidence 
was testicular and kidney cancer. Some other studies 
suggested association between PFAS exposure and cancer 
e.g. prostate and breast cancer but require further long-term 
and large size studies [82]. PFOSA associated with breast 
cancer risk in a case-control follow-up 15 years after plasma 
sampling, a study nested in the DNBC [83], and in the Health 
Development Pregnancy Cohort, maternal PFOSA exposure 
associated with daughters’ risk of breast cancer [84], but not 
for other analyzed PFAS. It has been observed a substantial 
increase in cancer among circumpolar Inuit during the 
last half of the 20th century especially for lifestyle and diet 
associated cancers such as breast, colon, and lung where 
environmental contaminant plays a role [85]. POP exposure 
can induce genetic alterations [86] e.g. DNA methylation [87], 
decrease defense against oxidative stress [88] and thereby 
increase the risk of cancer [29,89-92]. Significant, positive 
associations between breast cancer risk and PCB and PFAS 
exposure were observed in Greenlandic Inuit women [92]. 
Analyzing the combined mixture effect of serum lipophilic 
POP and PFAS on sex hormone receptor function, suggest 
sex hormone disruption as well as involvement of other 
pathways, respectively [93]. Studying the possible biological 
mechanism involved in exposure to POP and breast cancer 
suggest that PFAS might influence the risk by promotion of 
cell proliferation, accelerating the transition from G0/G1 
phase to S phase of the cell cycle and stimulating migration 
and invasion of normal breast epithelial cells. Moreover, 
in vitro studies suggest a possible carcinogen mechanism 
of PFAS via inducement of oxidative stress, inhibiting the 
hepatocyte nuclear factor HNF4α, and stimulate expression 
of proto-oncogenes in liver cells [29]. It is well known that 
different chemicals can interact and result in additive, 
synergistic and non-additive outcomes. Focusing on single 
compounds might underestimate the negative health effects 
and more focus should be on chemical mixtures exposures 
and health effect. Moreover, negative confounding causing 
toxicity (e.g. heavy metals and smoking) and beneficial 
factors such as omega-3 PUFA in seafood should be a part of 
the future research models.

PFAS Concentrations in Circumpolar and 
Northern Populations

A study aiming to compare the PFAS concentrations 
in serum from pregnant women in birth cohorts from 
four countries (Denmark, China, Norway, and Greenland) 
observed similar concentration and composition of serum 
PFAS for the Danish and the Norwegian women but otherwise 
different across the cohorts [5]. Generally, higher sum PFAS 
levels were seen in Greenlandic and Chinese women, and the 
PFSA were highest in Greenland although comparable levels 
for PFOS for the four countries, and the PFCA were highest 

in China but perfluoroundecanoic acid (PFUnA / PFUnDA) 
being higher in Greenlandic women; the lowest PFOA levels 
among the four cohorts was observed in Greenland [5]. 
These differences in PFAS profile might relate to country use 
and production of PFAS, population lifestyle and diet, and the 
health risks might also differ between the countries.

Across the circumpolar Arctic populations, there are 
relatively strong time trends for some POP going back to 
1990s. Time trends for PFAS among pregnant women and 
women in childbearing age are covered for several time-
periods (1990-1999, 2000-2007, 2007-2013, 2013-2018) 
[12]. In general, the contaminant levels differ by regions and 
mostly higher in males than females, and long- chain PFAS 
(≥ 6 carbons) such as PFOS and PFOA are more frequently 
measured in serum at higher concentration than short-
chain PFAS e.g., perfluorobutane sulfonic acid (C4, PFBS) 
and perfluorobutanoic acid (C4, PFBA). Predominately, PFOS 
and PFOA are measured across the Arctic with the highest 
concentrations observed in Greenland, especially at the east 
coast [8,34,76] (Table 1). 

Table 1A & Table 1B shows the PFAS levels of six 
compounds often measured in serum of Arctic original 
populations and northern populations primarily of Caucasian 
origin, respectively.

In the Kuskokwim region of Alaska, the levels of PFOS 
and PFOA elicit a slightly increase since 2009-2012, although 
comparable with the levels in the USA population NHANES 
study and many non-Arctic regions [12]. Notable exceptions 
are that PFNA and PFUnDA are elevated among St. Lawrence 
Island residents compared to men and women participating 
in NHANES (USA). The elevated concentrations of long chain 
PFAS in serum are likely due to exposure from traditional 
foods [12,94].

In the Canadian Arctic, the largest difference between 
eastern and western Canadian Arctic were for PFOS 
and the smallest difference were for PFOA and PFHxS. 
PFNA, perfluorodecanoic acid (PFDA) and PFUnDA tend 
to be higher in the Nunavik population (Table 1A) [12]. 
In the western region Old Crow, Yukon, the serum PFAS 
were similar or lower compared to the general national 
Canadian population (2016-2017), whereas PFNA levels 
were higher and increasing by age [95]. The regions of the 
Northwest Territories (NWT) elicited similar PFAS data 
with Yukon, although a bit higher PFOS level, and showed 
detectable serum data for PFOS, PFOA, PFNA and PFHxS, 
but most samples were in non-detectable levels for PFBA, 
perfluorohexane acid (PFHxA), PFUnDA and PFBS [95]. The 
highest concentration of all was in the eastern Nunavik region 
of Canada, particularly PFOS and PFNA, being up to 2-10-
fold higher for some contaminants. The time trends of PFAS 
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during 2004, 2007, 2012, 2017 in pregnant Inuit women 
from Nunavik elicited significant declines for PFOS, PFOA and 
PFHxS (p<0.0001). In contrast, PFCA such as PFNA, PFDA, 
and PFUnDA were increasing during 2012 - 2017 [96]. In 
adults from Nunavik, the PFAS concentration was in general 
twice the level in the general national Canadian population, 
PFNA and PFUnDA 7-fold higher and PFDA 4-fold higher. 
PFOS, PFNA, PFDA, PFUnDA and PFHxS increased with age, 
but not PFBA. Notably, the PFNA in adolescents (age 16-19 
years) were higher than PFOS and PFOA [97].

In Greenland, the geographical mother-child ACCEPT 
cohort established during 2010-2015 [76,98,99] observed 
a general regional difference in PFAS levels with the highest 
level in the order east > north > Disko Bay > west > south 
of Greenland (Table 1A). The study observed notably 
higher levels of the PFCA, PFNA and PFUnDA than PFOA 
[38]. A declining trend for PFOS and PFOA appeared, when 
comparing Greenlandic women since 1997/2006 to 2015 
[13,58,92,99,100]. A recent time trend study reported, for 
both women and men across Greenland, between 1994 and 
2015, a significant 5.82–11.7% annually decrease for the 
regulated PFOS, PFOA and PFHxS, whereas an increasing trend 
for women across Greenland of the un-regulated PFNA, PFDA 
and PFUdA [13]. The time trend tendency was supported by 
the ACCEPT follow-up study 3-5 years since pregnancy (2019-
2020) on intra-individual levels (Table 1A) [18]. Moreover, 
the ACCEPT follow-up study median concentrations of most 
PFAS (but not PFDA and PFUnA) were significantly higher in 
fathers than in mothers, being 1.4–4.6 times higher, and for the 
residential town a generally higher level was seen in Ilulissat 
compared to Sisimiut and Nuuk [18] (Table 1A). In addition, 
the ACCEPT follow-up study included 3-5 years old children, 
and the PFAS levels were measured in blood spots showing 
the following order of mean concentrations PFOS > PFOA > 
PFNA > PFOSA > PFUnA > PFHxS > PFDA and similar levels for 
the remaining compounds; interestingly, the PFOSA was not 
measured in serum above the detection level (1.19 µg/L) of 
the mother and fathers indicating the importance to measure 
the PFAS in the different blood matrices [101,102].

Another mother-child cohort, INUENDO, including 
Greenlanders was established 2002-2004 [61,70,103]. Data on 
PFAS for the mothers and male partners 2002-2004 showed 
very much higher levels of PFOS being up to ten-fold (20.6 
and 47.4 ug/L, pregnant women, and men, respectively) 
compared to the other PFAS measured (e.g., PFHxS, PFNA, 
PFDA, PFUnDA). Moreover, higher level was found in men 
up to 2-fold or more especially for PFOS, PFOA, PFNA, PFDA 
[69,104]. An OCEANS study including the INUENDO and the 
IVAAQ cohort study involved recruitment of Greenlandic 
children during 2012-2015 aged 7 – 12 years (Table 1A) [104]. 
Five Greenlandic communities were included: four from the 
west coast (Disko Bay area, Nuuk, Sisimiut, Manitsoq) and 

one from the east coast (Tasiilaq). Most PFAS were detected 
in almost all children with PFOS being predominant, while 
the levels of PFHxA and perfluoroheptanoic acid (PFHpA) 
were below detection limit in 94% and approximately 22% of 
the children, respectively. As observed in the ACCEPT cohort 
study, the region of residence associate with the contaminant 
level being highest at the east coast being e.g., up to 9.1-fold 
higher than the PFOS level in Nuuk eliciting the lowest level, 
and the highest concentration of PFOA was seen in Ilulissat. 
Generally similar levels were observed in girls and boys except 
for PFHpA being highest in boys. Moreover, consumption of 
traditional Greenlandic food was associated with increased 
concentration of environmental chemicals [104].

Comparing the PFAS levels of Greenlandic pregnant 
women cross-sectional year 2010-15 (Table 1A) with Danish 
pregnant women during 2008-13 [5,105], all PFAS (PFOS, 
PFOA, PFNA, PFDA, PFUnDA) but PFHxS, elicited the highest 
level in Greenlandic pregnant women. 

In Icelandic pregnant women PFOS and PFOA were 
measured in Reykjavik 2009 and the reported levels were 
similarly compared to most other circumpolar data although 
slightly lower PFOS (6.2 µg/L plasma) and higher PFOA (4.8 
µg/L plasma) [12].

Table 1B gives the PFAS levels of the six compounds 
most often measured in serum of northern populations of 
primarily Caucasian origin.

The Faroe Islands have initiated several mother-child 
cohorts since the 1980s (Table 1B). The cohort 1, sampled 
1986-1987, measured the PFAS levels since birth, age 7-, 14-, 
22- and 28-years old children in 2013-2016. The time trend 
of PFAS from age year 7 to year 28 was clearly a decrease 
over the time of 21 year for the regulated PFOS, PFOA, PFHxS 
(partly) and an increase of unregulated PFNA and PFDA 
[106]. The Faroe Island cohort 3 were sampled 1998-2000, 
including mother-child pairs, reported similar PFAS at ages 
5 and 7.5 years, but a large decline in PFOS and PFOA levels 
in the children at age 13 years, whereas the levels for PFHxS, 
PFNA and PFDA elicited no clear shift among the children 
[12]. The Faroe Island cohort 5 was initiated 2007- 2009 
and the levels of PFAS were measured in the mother and 
for the child at age 1.5, 5 and 9 years old. The time trend of 
PFAS elicited a decline in PFOS and PFOA levels between 1.5 
and 5 years of age, whereas the other PFAS (PFNA, PFDA, 
PFHxS) appeared higher at 5 years of age [107]. A general 
decrease in PFAS levels was reported for children between 
5 and 9 years of age [12]. In summary, the PFAS exposure 
data for the Faroe Island cohort 1, 3 and 5 were reported to 
peak in 2000 and decreased by 14.4% per year since with 
the majority decrease attributed to regulation and therefore 
rapid decrease of PFOS and PFOA [108].
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1A. 
Country Alaska Arctic Canada Greenland (ACCEPT) Greenland

(OCEAN)

Region/ 
Cohort

St 
Lawrence 

Island

Old Crow, 
Yukon

Northwest 
Territories Nunavik

Cross- 
section 

al
North

Disko 
Bay 
area

West South East West** 
followup

West & 
East***

Sample
Year 2013-2014 2019 2019 2017 2010-2015 2019-

2020 2012-2015

Sex M W M W M W M W pW pW pW pW pW pW pW M# W
Children

(M+F)
Mean age 29 28 43 39 48 45 35 35 24 27.5 28.4 27.1 27.3 28.6 27.4 37.2 33.8 10c

Sample N 38 47 26 28 57 55 3 3 91 499 32 122 283 43 19 76 101 338
PFAS*
PFOS 6.96 3.29 1.4 0.78 2.5 1.6 7.7 5.3 3.3 9.06 12.2 10.4 8.17 7.12 18.3 7.71 4.36 8.68c

PFOA 1.45 0.85 1.1 0.76 1.1 0.72 1.4 0.74 0.55 1.04 0.97 1.10 1.04 0.91 1.12 0.96 0.38 2.28c

PFHxS <DL <DL 0.56 0.26 0.58 0.23 0.98 0.47 0.26 0.52 0.67 0.49 0.49 0.42 1.49 0.76 0.27 na
PFNA 2.75 2.07 1.2 0.77 1.5 1.3 4.3 3.6 2.5 1.19 1.42 1.3 1.1 0.94 2.52 1.12 0.67 1.40c

PFDA <DL <DL 0.16 0.16 0.22 0.20 0.90 0.84 0.52 0.74 0.98 0.88 0.67 0.55 1.51 0.52 0.44 0.49c

PFUnDA 1.04 0.88 0.11 0.10 <0.10 <0.10 0.87 0.91 0.60 1.42 1.91 1.77 1.25 1.01 3.4 0.60 0.63 na

1B. 
Country Faroe Island§ Norway Sweden Finland

Region/ 
cohort Cohort 1 Cohort 3Cohort 5 MISAa Northern 

adolescent
Oslo 

adult’s
Northern 

adults

Cross- 
sectional 

adolescent

First time 
mothers 
Uppsala

Eastern LUKAS2 
cohort Children e

Sample 
Year(s) 2013-16 2011-12 2016-18 2007-

09 2010-11 2013-
14 2001-13 2016-17 2017-19 2005-

06
2010-

11
2014-

15
Sex M W M + F M + F pW M F M + W W M + F W (3W, AD)d M + F M + F M + F

Mean age 28 28 13.2 9 31 16.5 16.3 41 56 ± 6 14.7
(10-21)

30.4
(21.9-45.3) 1 6 10.5

Sample N 220 179 526 381 391 445 495 61 187 1096/1098 110 54 54 54
PFAS*
PFOS 9.14 4.59 6.6 3.27 7.7 5.71 6.52 6.95b 15c 4.6c 3.2c 5.5 c 2.1 c 1.5c

PFOA 1.16 1.06 2.0 1.44 3.9 2.14 1.86 2.39b 2.7c 1.40c 1.0c 6.6 c 2.7 c 1.5c

PFHxS 0.54 0.25 0.4 0.27 0.43 0.80 0.95 0.95b 1.2c 1.80c 1.8c 0.47 c 0.42 c 0.21c

PFNA 1.14 0.78 0.7 0.65 0.58 0.61 0.48 1.06b 0.83c 0.4c 0.4c 0.8 c 0.54 c 0.36c

PFDA 0.40 0.29 0.3 0.24 0.23 0.27 0.19 0.40b 0.33c 0.2c 0.2c na na na
PFUnDA na na na 0.17 0.24 0.17 0.14 0.43b 0.22c <LOQ 0.2c na na na

Table 1: PFAS concentrations in circumpolar Arctic regions with primary focus on the period 2010-2020: A. original populations 
/ Inuit; B. populations primarily of Caucasian origin.
N: number; *: µg/L serum, PFAS concentrations are given in geometric mean if nothing else is given; M: men; W: women; 
pW: pregnant women; Greenland (ACCEPT): the recruitment of pW was performed in 16 towns: North (Qaanaaq, Upernavik, 
Uummannaq), Disko Bay (Ilulissat, Aasiaat, Qeqertarsuaq, Qasigiannguit), West (Sisimiut, Maniitsoq, Nuuk, Paamiut), South 
(Qaqortoq, Nanortalik, Narsaq), East (Tasiilaq, Ittoqqortoormiit); **: The ACCEPT follow-up: Ilulissat (Disko Bay: M/W: 
8%/11%), Sisimiut (M/W: 17%/21%, Nuuk (M/W: 66%/68%); #: the father; na: not available; ***: the OCEAN study including 
five communities fours from the west coast (Disko Bay area, Nuuk, Sisimiut, Manitsoq) and one from the east coast (Tasiilaq). 
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F: female; DL: detection limit; LOQ: limit of quantification; §: the oldest children in the three specific cohorts (1 or 3 or 5); a: 
The northern Norway Mother-Child Contaminant Cohort including pregnant women from Finnmark, Troms, and Nordland in 
northern Norway; b: the PFAS concentrations are given in arithmetic mean; c: median (IQR); d: AD: weeks after delivery; e: 
sample data in same individual at the three time points.

The level of PFAS in pregnant women (MISA) of the 
Northern Arctic Norway sampled 2007-2009 [109] (Table 
1B) elicited similar levels as Danish pregnant women for 
samples taken in the same period for both PFOS, PFOA, PFNA, 
PFDA, PFHxS and PFUnDA [5]. However, comparing the MISA 
pregnant women with Greenlandic ACCEPT pregnant women 
cross-sectional (Table 1A), the Inuit women had higher PFOS, 
lower PFOA and similar PFHxS levels, but approximately 
2-fold higher levels of PFNA, PFDA, whereas the PFUnDA level 
was almost 6-7-fold higher in the Greenlandic women (Table 
1A & B) [5,12]. In Northern Arctic Norway adolescents 2010-
2011 at mean age 16-17 years, the PFAS elicited the highest 
level of PFOS and PFOA, inversely associated with age, and 
being slightly lower compared to the MISA pregnant women 
(Table 1B). Higher PFHxS levels compared to the MISA data 
were found, whereas the level of PFNA, PFDA and PFUnDA 
were like the MISA data. Pooled adult men and women PFAS 
data from Oslo, Norway sampled during 2013-14 at mean 
age 41 (range 20-66) measured in serum, plasma, and whole 
blood. A strong correlation among the three matrices was 
observed, however of the measured PFAS, PFOSA was found 
at the highest concentrations in whole blood, and PFHxA 
was only detected in whole blood, indicating the importance 
of measuring PFAS in both serum/plasma and whole blood 
[101]. Again, PFOS and PFOA elicited the highest serum 
levels, and compared to the MISA pregnant women lower 
PFOA, higher PFHxS, PFNA, PFDA and PFUnDA (Table 1B) 
[101].

In Wästerbotten, the Northern region of Sweden, PFAS 
were measured in 187 women 1990 – 2003 (age 46 ± 6) 
and again 2001-2013 (56 ± 6) (Table 1B). The study found 
relatively high PFOS levels compared to other Arctic data. 
The concentration of six PFAS with concentration above 
detection limit showed in this 10 years period a 15% and 
29% decrease for PFOS and PFOA, respectively. In contrast, 
PFNA and PFHxS elicited an increase of 53% and 13%, 
respectively [110]. A cross-sectional national survey of 
adolescents conducted in 2016-2017 (mean age 14.7 (range 
10-21) showed higher PFAS (PFNA, PFHxS, PFOS) levels 
in boys than girls (Table 1B). Compared to the Northern 
adolescents in Norway, the Swedish showed lower PFOS, 
PFOA but higher PFHxS [12,111]. Swedish PFAS time trend 
during 1996 – 2017/19 of first-time mothers in Uppsala 
showed in this period a clear decrease of PFOS and PFOA 
but increasing levels of PFNA, PFDA and PFUnDA (Table 1B) 
[112].

In eastern Finland the PFAS levels in cord blood from a 
birth cohort at the Turku University Hospital 1997-2002, 
were as follows (median µg/L; n=156): PFOS 5.2, PFOA 
2.1, PFNA 0.01, PFHxS 0.01, and PFDA 0.01; these Finish 
data showed significant lower levels of PFOS, PFOA and 
PFNA compared to Danish cord blood from the joint birth 
cohorts at Rigshospitalet and Hvidovre Hospital 1997-2001 
[(median µg/L; n=59) PFOS (9.1), PFOA (2.6), PFHxS (0.01), 
PFNA (0.06), PFDA (0,01)] recruited in the same period [91]. 
Moreover, a time trend study of children from the Finnish 
birth cohort study (LUKAS2) in Eastern Finland (recruited 
at Kuopio University Hospital) was conducted during 2005 
– 2015 for children at 1, 6 and 10.5 years of age with sample 
data in same individual at the three time points (Table 1B) 
[113]. The data elicited a clear significant decreasing trend 
over time for PFOS, PFOA, PFNA and PFHxS (not significant) 
with no obvious difference between boys and girls. PFOS and 
PFOA accounted for 73-80% of the median concentrations, 
where the PFOA level was higher than PFOS at 1 and 6 years 
of age [113].

Although, the observed age decreasing time trend in the 
children must take into consideration the influence on serum 
concentration by e.g., parallel growth dilution, variation in 
elimination rates with ages and temporal changes in external 
exposures.

Summary

The profile and concentrations of PFAS found in the 
circumpolar Arctic populations elicit regional differences 
that might be related to PFAS exposure via lifestyle and diet. 
This PFAS differences might affects the health risk. The Arctic 
indigenous and northern populations consuming traditional 
diet including marine mammals at the top of the food-chain 
(e.g., whales, seals, polar bears) are particularly exposed to 
POP/PFAS. Regional concentration and profile differences 
were found cross sectional over the circumpolar Arctic with 
the highest level found in Greenland. In general, during the 
2010-20 period, the regulated PFAS (PFOS, PFOA, PFHxS) 
tend to decrease and the unregulated PFAS (e.g., PFNA, PFDA, 
PFUnDA) increased in concentration. Higher PFAS levels 
were found in men than women, and higher levels in older 
humans than adolescent and young children. For most Arctic 
regions, the PFAS levels were higher compared to the general 
national country populations.
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Figure 1: Map of the eight countries surrounding the Arctic Ocean in the Arctic region. Red line gives the area border of the 
AMAP assessment programme (Modified from AMAP (1998) and [114]).
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