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Abstract

Background: Traditional toxicity testing emphasizes animal models with growing concerns regarding predictive capacity, 
throughput and ethics. Rapid innovation surrounding human cell platforms, bioengineered tissues, omics techniques and 
computational tools offers more modern alternatives aligned with expanding knowledge of chemical biological pathways. 
These disruptive approaches promise immense potential to transform next-generation chemical safety assessment and drug 
development pipelines. 
Purpose: This review provides clinical researchers an updated, comprehensive perspective across evolving areas of focus in 
new toxicity testing methods with analysis of latest advances and translational context.
Main Body: We survey progress in two- and three-dimensional human cell cultures recapitulating tissue/organ complexity 
impossible in conventional assays. Complementing this, computational modeling integrates structure-activity relationships, 
physicochemical properties and physiological interactions to predict pharmacokinetics and toxicity in silico. Expanding model 
organisms add further dimensionality and demographic relevance. High-throughput omics and imaging technologies unravel 
mechanisms and illuminate biomarkers undetectable by standard measures. Specialized techniques show high promise 
addressing toxicodynamic intricacies within disease contexts like diabetes and NAFLD. Evaluating traditional medicines and 
expanding phytochemicals likewise represents an area of growth well-suited for contemporary platforms. Future outlook 
weighs remarkable potential advantages in reducing animal testing demands, enabling precision toxicology links to clinical 
medicine and overhauling core chemical risk assessment frameworks.
Conclusion: This review intends to catalyze discourse on strategic optimization priorities and roadmaps towards fully 
unlocking the immense yet still emerging public health potential of these disruptive techniques poising transformation in 
toxicity sciences centered on human-focused models.
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Abbreviations: 2D: Two-Dimensional; 3D: Three-
Dimensional; AI: Artificial Intelligence; MS: Mass 
Spectrometry; NMR: Nuclear Magnetic Resonance; NAFLD: 
Non-Alcoholic Fatty Liver Disease; OCT: Optical Coherence 
Tomography; PBPK: Physiologically Based Pharmacokinetic; 
QSAR: Quantitative Structure-Activity Relationship; TCM: 
Traditional Chinese Medicine.

Introduction 

Traditional animal toxicity testing has been the standard 
for evaluating drug and chemical safety for decades [1,2]. 
However, these methods have significant limitations 
including being expensive, time-consuming, low-throughput, 
and not always predictive of human responses. This has 
driven the development of new techniques and models 
aimed at reducing, refining and replacing animal testing 
[3-5]. Recent advances in in vitro systems and in silico 
modeling have enabled more human-relevant and predictive 
approaches to toxicology assessment [6,7]. High-throughput 
screening combines automated robotic systems with 
libraries of human cell lines to evaluate compound effects and 
mechanisms of toxicity. Organ-on-a-chip microphysiological 
systems utilize microfluidics and human-derived tissues to 
emulate organ structure and function. Genome editing tools 
like CRISPR allow the creation of novel in vitro models with 
disease-specific genotypes [8-10]. Computational methods 
like quantitative structure-activity relationship (QSAR) 
models, physiologically-based pharmacokinetic (PBPK) 
modeling, and machine learning algorithms applied to large 
toxicology datasets have accelerated predictive toxicology. 
These in silico models provide rapid insight into compound 
pharmacokinetics, metabolism, and potential organ toxicities 
[11,12].

Additionally, induced pluripotent stem cell (iPSC) 
technology now enables the derivation of diverse human cell 
types for toxicity analysis. iPSC-derived cells better capture 
population diversity compared to immortalized cell lines. 
High-content imaging and omics profiling of iPSC-derived 
cells exposed to compounds provide rich phenotypic datasets 
for toxicity prediction [13,14]. This review comprehensively 
surveys emerging techniques, disease contexts, and 
future outlook to provide clinical researchers an updated 
perspective. It aims to catalyze discourse on optimization 
priorities and strategic roadmaps toward fully unlocking 
the public health potential of these disruptive approaches to 
better safeguard therapeutic advancement.

In Vitro and In Silico Models

In vitro and in silico models provide important 
alternatives to traditional animal testing for evaluating 
chemical and drug toxicity. These systems allow for high-

throughput screening, reduce costs, and align with ethical 
opposition to excessive animal testing. A range of models 
have emerged to recapitulate aspects of human physiology 
and predict potential toxicities.

2D Cell Cultures

Two-dimensional (2D) cell cultures form the most basic 
in vitro system. These models culture human cell lines as 
monolayers on plastic or glass substrates. Immortalized cell 
lines, such as HepG2 hepatocytes and A549 lung epithelial 
cells, or primary cells sourced from human tissue provide 
human-relevant biology. High-throughput screening assays 
detect cytotoxicity and functional endpoints like enzyme 
secretion. Co-culturing with multiple cell types enables 
evaluation of intercellular interactions [15,16]. Limitations of 
2D cultures include lack of native tissue architecture, limited 
lifespan of primary cells, and adaptation of immortalized 
lines to artificial culture conditions. Microfluidic organs-
on-chips integrate multiple 2D cultures to mimic organ 
physiology. Nonetheless, 2D systems remain heavily used for 
cost-effective cytotoxicity screening due to their simplicity 
[17-19].

3D Organoids and Micro physiological Systems

Three-dimensional (3D) culture systems better 
reflect human tissue complexity. Organoids derived from 
stem cells self-organize into miniature organs following 
developmental programs. Microphysiological systems 
position cells in 3D configurations using scaffolds, 3D 
printing, and microfluidics. These enhance resemblance to 
tissue-level architecture and function [20-23]. For instance, 
liver microtissues array hepatocytes with stromal cell types 
into sinusoid-like structures condusive to drug metabolism 
and toxicity. Intestinal organoids model distinct segments 
of the gastrointestinal tract on chips with peristaltic 
motion and fluid flow. Assembly of multiple organoids 
on integrated microfluidic devices enables evaluation 
of inter-organ interactions [24,25]. Beyond organ-level 
complexity, advantages include primary human cell 
integration, perfusable vasculature, and culture longevity 
exceeding months. Limitations persist in fully recreating 
tissue heterogeneity and accurately reflecting human 
pharmacokinetics. Ongoing advances in tissue engineering 
continue progressing physiological relevance [26].

Computational Models

In silico computational models provide alternatives 
to experimental assays. These predict pharmacokinetic 
behavior and potential toxicities using machine learning, 
physicochemical properties, and biological interactions.

https://medwinpublishers.com/ACT/
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QSAR Models
Quantitative structure-activity relationship (QSAR) 

models correlate chemical descriptors with bioactivities 
using statistical regression. These predict toxicity endpoints 
for untested chemicals based on structure similarities 
with compounds having known effects [27]. QSAR models 
now exist predicting mutagenicity, carcinogenicity, 
developmental/reproductive toxicity and other effects. For 
example, DEREK Nexus contains dozens of toxicity QSAR 
models derived from curated data on over 6,000 compounds. 
Limitations of QSAR models include reliance on existing 
data, applicability domains restricting chemical space, and 
inadequate capture of mechanisms [28].

PBPK Models
Physiologically based pharmacokinetic (PBPK) modeling 

simulates ADME (absorption, distribution, metabolism 
and excretion) using prior drug physicochemistry 
and physiological parameters. These compartmental 
models represent organs/tissues with blood circulation 
connecting them [29]. PBPK enables prediction of chemical 
concentrations in various organs over time. This facilitates 
estimating dose exposures and tissue dosimetry to evaluate 
potential toxicity. Used earlier in development than human 
trials, PBPK models guide dose selection and mitigate 
toxicity risks. However, requirements for comprehensive 

parameterization remains a challenge [30,31].

AI for Toxicity Prediction and Modeling

Artificial intelligence, especially deep learning, is gaining 
rapid traction for toxicity evaluation. AI algorithms train on 
large chemical datasets to predict potential toxicities with 
high accuracy. Models include recurrent neural networks, 
graph neural networks integrating molecular structure, and 
hybrid approaches combining AI with PBPK modeling [32]. 
Key examples include AstraZeneca’s liver toxicity models, 
QuantumBlack’s Mutagenesis ML and OrganTox AI models, 
and the META framework integrating gene expression 
data. Multiple startups now provide predictive toxicity 
services. Benefits center on performance exceeding other 
in silico methods and capacity for integrating diverse data 
types. Cautions remain around model interpretability and 
bias in training data. Regulatory acceptance has slowly 
increased but still varies widely [33,34]. Looking ahead, 
collaborative public-private data sharing efforts will 
expand available training data to power next-generation AI 
models. Incorporating more causal biological mechanisms is 
expected to enhance model generalizability and trust. While 
unable to fully replace experimental toxicity testing, usage of 
AI models continues growing to better predict potential toxic 
liabilities early in development (Table 1) [35,36].

Method Description Advantages Limitations

2D cell 
cultures

Human cell lines cultured as 
monolayers

Simple, cost-effective for 
cytotoxicity screening

Lack native tissue architecture, limited 
lifespan of primary cells

3D organoids Self-organized miniature organs 
from stem cells

Mimic tissue complexity, 
architecture, and function

Do not fully recreate tissue 
heterogeneity and human 

pharmacokinetics

Organs-on-
chips

Cells arranged in 3D using 
microfluidics

Perfusable vasculature, co-
culture of multiple cell types

Still simplifications of true tissue 
physiology

QSAR models Predict toxicity based on chemical 
structure-activity relationships

Rapidly predict toxicity for 
untested chemicals

Reliant on existing data, limited 
applicability domains

PBPK models Simulate ADME using 
physicochemistry and physiology

Predict tissue exposures and 
dosimetry

Require comprehensive 
parameterization

AI models ML algorithms predict toxicity from 
large datasets

High accuracy exceeding 
other in silico methods

Challenges with model interpretability 
and bias

Table 1: New Toxicity Testing Methods.

Novel Model Organisms

Expanding the diversity of model organisms provides 
improved representation of human biology absent in 
traditional animal models. These novel systems allow 
new perspectives on pathways underlying toxicity 
susceptibilities.

Zebrafish

Zebrafish have emerged as a key higher-order toxicity 
model owing to evolutionary conservation with mammals 
and compatibility with high-throughput testing. Embryonic 
zebrafish offer a rapid vertebrate development model to assess 
teratogenicity through the first 5-7 days of embryogenesis. 
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Toxicity screening platforms leverage automated imaging 
to detect morphology changes in zebrafish larvae following 
chemical exposure [37,38]. Adult zebrafish additionally 
model chronic disease processes. Studies have evaluated 
chemical impacts on behavior, reproduction, cardiovascular 
function among other endpoints [39,40]. Transgenic 
zebrafish with reporter genes facilitate non-invasive tracking 
of biological responses. Limitations of zebrafish include 
partial representation of mammalian physiology given 
evolutionary divergence. Nonetheless, integration with other 
model systems helps strengthen mechanistic inferences [41].

Humanized Mice

Mice engrafted with functional human cells or tissues 
provide improved preclinical models combining whole-
organism complexity with human biology. Multiple 
approaches exist: CD34+ hematopoietic stem cells enable 
human immune system reconstitution in immunodeficient 
mice. Primary tissue transplantation facilitates assessment 
of toxicity responses in human neural, hepatic, pancreatic 
and other cell types in vivo [42-44]. Beyond direct tissue 
integration, CRISPR knockin of human genes related to 
drug metabolism improves correspondence of xenobiotic 
responses. Humanized mouse models thereby increase 
clinical translational relevance over tradition mouse strains 
in multiple areas including immunotoxicity. Expense and 
technical demands constrain widespread usage though 
innovations may increase accessibility [45-47].

Human Gut Microbiota

The human gut microbiome mediates chemical exposure 
through ingestion, influencing metabolic fate and subsequent 
bioactivities. Interspecies variation in gut microbes 
contributes to differences in chemical toxicities across model 
systems. Integrating representative human microbiota into 
preclinical testing better recapitulates physiological reality 
[48-51]. Illustrates the various roles performed by the gut 
microbiota. These include the generation of secondary 
bile acids (BAs) and the breakdown of proteins, as well as 
the breakdown of foreign substances (xenobiotics) and the 
synthesis of water-soluble vitamins. The gut microbiota 
also plays a significant role in regulating inflammation and 
immune responses, and it contributes to the preservation of 
the integrity of the intestinal barrier [52].

Approaches include colonizing gnotobiotic animals 
with defined microbial communities, supplementing in vitro 
cultures with probiotics, and computational integration 
into PBPK modeling [53]. The MIDI-Health platform allows 
high-throughput chemical testing on primary human fecal 
cultures. Accounting for microbiome-mediated metabolism 
promises to improve accuracy particularly for orally-

administered drugs and environmental contaminants [54].

Omics Approaches 

Omics technologies measure global biomolecular 
changes occurring with toxicity exposures. These unravel 
mechanisms of compound interactions and new biomarkers 
for hazard identification.

Genomics

Genomic sequencing identifies associations between 
gene polymorphisms and toxicity susceptibility. Genome-wide 
association studies uncover genetic risk factors in pathways 
regulating detoxification, DNA repair, immune activation 
among others based on adverse outcomes or exposure 
biomarkers across large cohort studies. High-throughput 
toxicogenomic screening directly evaluates chemical impacts 
on global gene expression changes [55,56]. For instance, the 
TG-GATES database houses liver gene expression profiles 
across 170 compounds to serve as reference controls. DNA 
microarrays rapidly profile transcriptional changes revealing 
mechanisms and biomarkers of organ injury not discernable 
from traditional endpoints [57].

Epigenomics 

Epigenetic changes to DNA and histones influence 
downstream gene regulation relevant to chemical exposures. 
Toxicants directly or indirectly affect epigenetic processes 
like DNA methylation, histone modifications and non-
coding RNA expression. High-throughput sequencing 
defines epigenetic alterations and illuminates new toxicity 
pathways missed by purely genetic approaches [58]. Notable 
examples linking toxic exposures and epigenetic changes 
include air pollution-induced respiratory effects, arsenic 
carcinogenesis mechanisms and transgenerational impacts 
of certain pesticides. Ongoing integration of epigenomic data 
promises to provide unique insights into previously cryptic 
connections [59].

Metabolomics

Metabolomic analyses quantify global metabolite changes 
in biofluids, offering a functional readout of physiological 
status responsive to toxic challenges. NMR spectroscopy 
and mass spectrometry provide broad metabolite detection 
used to model biofluid metabolite signatures of exposures 
and early toxicity manifestations [60]. Repeat dose studies 
reveal metabolite trends tracking with histopathological 
progression. Models can diagnose onset of organ injury (e.g. 
liver, kidney) days to weeks sooner than current panels, 
enabling earlier intervention. Metabolic biomarkers likewise 
show utility for chemical risk assessment [61].
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Imaging Techniques

Imaging modalities longitudinally visualize anatomical 
and functional impacts of toxicity non-invasively over the 
lifespan of a model organism. These provide complementary 
data on emergent macroscale changes not always predictable 
from cell assays.

Ultrasound Imaging

Ultrasound visualizes structure and blood flow in soft 
tissue without ionizing radiation. High-frequency ultrasound 
enables detailed assessment of tissue architecture in 
skin, eye, kidney, cardiovascular and other organs. Micro-
ultrasound further achieves cellular resolution to visualize 
early histopathological changes from toxicant exposures in 
vivo [62]. Ultrasound biomicroscopy, for example, achieved 
precise 3D imaging of embryo abnormalities in zebrafish 
development toxicity studies. Contrast enhanced ultrasound 
improves sensitivity and multiplexing capacity. Portability, 
cost-effectiveness and lack of toxicity makes ultrasound 
imaging widely accessible for longitudinal toxicology [63].

Optical Imaging 

Optical reporters including bioluminescent proteins and 
fluorescent labels provide sensitive dynamic readouts of cell 
viability and function in vivo. Bioluminescent ATP assays 
detect real-time cytotoxicity in target organs. Fluorophore-
coupled probes enable tracking of tissue-specific processes 
like kidney glomerular filtration and liver biliary excretion 
[64]. Light sheet fluorescence microscopy offers rapid 3D 
imaging data without tissue processing artifacts. Optical 
clearing expands depth penetration and whole body imaging. 
Continued development of targetable optical sensors and 
smarter image analysis algorithms promise to transform in 
vivo imaging for toxicology [65].

Traditional Medicine and Herbal Toxicity 
Screening

Traditional medicine systems including Chinese, 
Ayurvedic and other ethnomedical practices use herbal 
formulations for therapeutic intent. As adoption of evidence-
based holistic care models expands globally, evaluating safety 
and toxicity of these natural products grows in importance.

Traditional Chinese Medicine

Traditional Chinese medicine (TCM) relies on plant, 
animal and mineral materia medica prescribed in carefully 
balanced formulas to stimulate healing responses. TCM 
holds a strong presence as standard medical care in 
China and influences healthcare across Eastern Asia and 

internationally. However, variable manufacturing quality 
and toxic adulterants can lead to safety issues [66,67]. 
Hepatotoxicity, nephrotoxicity and embryonic defects 
number among reported adverse effects. Examples include 
aristolochic acid-mediated kidney disease, aconite alkaloid 
toxicity, and anticholinergic effects of certain formulations. 
Contaminants like heavy metals in mineral ingredients may 
accumulate over long-term use. Due to frequently lacking 
label transparency and individual variability in responses, 
granular assessment is needed to define toxicity liabilities 
[68,69]. High-throughput approaches show initial promise 
evaluating TCM product safety. Testing across >2,500 TCM 
extracts revealed low rates of mutagenicity, improving 
confidence in general genotoxic potential. However, the 
vast array of possible formulation combinations makes 
comprehensive testing infeasible. Advancing personalized 
prediction models and pharmacovigilance efforts tailored 
for TCM remain critical to ensure consumer safety amidst 
growing use globally [70,71].

Ayurvedic Medicine 

Ayurveda represents a cornerstone of traditional Indian 
medicinal practice, encompassing diet, lifestyle and multi-
component herbal formulations to restore wellbeing. In recent 
decades, interest in Ayurvedic approaches has accelerated 
in India, wider South Asia and abroad. With this has come 
enhanced focus on evaluating toxicity risks of commonly used 
Ayurvedic herbs [72,73]. Documented adverse effects include 
nephrotoxicity, hepatotoxicity, lead poisoning and arsenicosis 
linked to certain plant ingredients and mineral additives. 
Examples such as aristolochic acid nephropathy have raised 
international concern. Lack of consistent manufacturing 
standards contributes to contamination prevalence in certain 
market segments. Sensitive subpopulations like pregnant 
women and children face particular exposure risks needing 
further research [74,75].

Potential Toxicity of Herbal Extracts

Beyond codified traditional medicine systems, herbal 
extracts from roots, leaves, seeds and fruits form a prevalent 
and expanding segment of dietary supplements and natural 
health products globally. Though perceived as intrinsically 
safe given natural origins, many commonly used botanical 
ingredients have unclear toxicity profiles at different dose 
exposures [76,77]. Pyrrolizidine alkaloids offer prime 
examples of potentially toxic natural phytochemicals 
requiring safety evaluation, found broadly across >6000 
plant species including many popular herbs and teas. 
Hepatotoxic, pneumotoxic, genotoxic and carcinogenic 
effects are reported for certain pyrrolizidine alkaloids. 
Content ranges substantially by plant type, growing 
conditions and processing, complicating risk assessment 
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[78]. Other concerning bioactives include estragole in 
fennel and basil, safrole in sassafras, aristolochic acids in 
butterfly ginger relatives, and furanocoumarins in figs. 
Extract high-throughput bioactivity profiling combining 
NMR, MS and AI prediction models better defines biological 
risks to focus tiered testing priorities [79]. Addressing the 
tremendous chemical diversity of phytochemicals still poses 
major challenges for preclinical toxicity analysis. Cross-
sector efforts advancing computational toxicology methods, 
biologically relevant exposure models and smarter endpoints 
tracking key toxicity pathways will provide faster assurance 
on safety of emerging herbal products.

Applications in Specific Disease Areas

Leveraging next-generation toxicology methods in 
disease-specific contexts enhances clinical translation 
and personalization. Human cell models, microphysiology 
systems, imaging biomarkers and computational models 
better predict individual risk variations from standard animal 
data. Focus areas benefiting most from advanced testing 
methods include liver disease, kidney disease, diabetes, 
cardiovascular toxicity, infection models, and oncology.

Liver Diseases 

The extensive role of liver in xenobiotic metabolism 
and resultant pathogenesis makes it a central focus of 
toxicity analysis. Advanced testing techniques provide 
improved models of human susceptibility variations and 
clinical endpoints. Primary human hepatocyte cultures 
better represent interindividual differences in expression of 
metabolic enzymes (e.g. Cytochrome P450s) and transporters 
relative to immortalized cell lines. Microfluidic liver chips 
with flow/perfusion increase functional longevity, allowing 
chronic toxicity evaluation. Multi-omics biomarkers from 
these systems deliver poised indicators of emerging liver 
injury [80-88]. In silico modeling simulates patient-specific 
pharmacokinetics and mechanistic toxicity pathways in 
non-alcoholic fatty liver disease (NAFLD). Imaging methods 
like ultrasound elastography noninvasively diagnose and 
track fibrosis progression. Overall these approaches refine 
chemical risk assessment and therapeutic interventions for 
liver disease subgroups [89-92].

Glomerulonephritis

Glomerulonephritis represents inflammation and 
damage to the kidney’s filtration units. Certain toxins 
directly instigate glomerular injury while environmental 
factors may trigger autoimmunity attacking the glomeruli 
[93]. Human kidney organoids self-developed from stem 
cells provide native architecture to model toxin filtration 
and nephrotoxicity absent in other cultures. Exposure 

alongside human immune cells evaluates potential antigen 
formation triggering autoimmune kidney reactions. 
Microfluidic filtration chips offer further insights into 
functional impairments including proteinuria and blood 
cell clogging at the glomerulus [94-96]. In silico modeling 
based on clinical glomerulonephritis biomarkers assists 
prediction of nephrotoxic potential. Ultrawide-field 
fluorescence imaging efficiently tracks glomerular filtration 
activity using exogenous reporters. Altogether these systems 
advance toxicity prediction and monitoring for personalized 
therapeutics development [97].

Diabetes 

Diabetes markedly increases sensitivity toward drug- 
and chemical-associated organ damage, partially linked to 
underlying inflammation and vascular dysfunction. Improved 
toxicity models in diabetic contexts are imperative to guide 
appropriate risk management. Islet organoids derived from 
human stem cells mimic functional responses of key cell 
populations to better understand beta-cell health impacts. 
Microfluidic pancreas-on-a-chip with tri-culture of endocrine, 
exocrine and endothelial cells boosts clinical relevance. 
High-content imaging tracks beta-cell death dynamics 
following exposure. Multi-tissue chips interconnected with 
vascular flow assess system-level end-organ effects [98]. 
Furthermore, PBPK modeling incorporating diabetes-
associated co-morbidities and polypharmacy predicts 
exacerbated exposure and adverse reactions. AI algorithms 
analyze patient phenotypes and retinal imaging biomarkers 
to tailor compound testing in pertinent diabetic cohorts. 
Overall, advanced approaches deliver improved preclinical 
screening to balance therapeutic need with disease-specific 
toxicity risks [99-102].

Cardiovascular Toxicity 

Drug-induced cardiovascular liabilities remain leading 
causes of compound failure and market withdrawal. 
Sophisticated models profiling electrical, functional and 
structural effects better predict arrhythmia, thrombosis and 
blood pressure risks [103,104]. Human induced pluripotent 
stem cell derived cardiomyocytes exhibit appropriate 
electrophysiological features for high-throughput arrhythmia 
safety screening. Multi-parameter readouts enhance 
detection sensitivity to ion channel modulators. Microfluidic 
vascular replicas reconstituted with endothelial, smooth 
muscle and perivascular cells assess thrombosis mechanisms 
absent in cell cultures [105,106]. Moreover, PBPK modeling 
assimilates clinical risk factors like diet and age for enhanced 
exposure simulation in vulnerable groups. Echocardiography, 
OCT and MRI imaging quantify myocardial strain dynamics 
and perfusion changes indicating early pathogenesis prior to 
overt symptoms [107]. 
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Breast Cancer 

Breast cancer subgroups display differential therapeutic 
toxicity risks contingent on hormonal and genomic 
phenotypes. Improved modeling of this heterogeneity 
promises more precise management of adverse drug 
reactions [108]. 3D breast cancer organoid arrays preserving 
tumor architecture, microenvironmental factors and genetic 
diversity better recapitulate drug responsiveness distinctions 
across molecular subtypes than conventional 2D cultures. 
Multiplex pharmacogenomic biomarker readouts assist 
precision risk screening [109,110]. Further incorporating 
stromal elements like cancer-associated fibroblasts refines 
accuracy of treatment response projections based on the 

genomic landscape. Enhanced biobanks leveraging these 
techniques will expand cohorts for uncommon subgroups 
to derive sufficient statistical power for clinical translation 
(Table 2) [111,112].

Colorectal Cancer 

Toxicity issues also burden colorectal cancer 
therapeutics, spurring development of enhanced modeling 
approaches. Multi-region tumor organoid biobanks better 
represent intratumoral heterogeneity in genetics and 
microenvironment interactions determining regional 
chemosensitivity [113-115]. 

Disease Context Advanced Testing Methods
Liver disease Primary human hepatocytes, liver microtissues, multi-omics biomarkers, ultrasound elastography

Kidney disease Human kidney organoids, microfluidic filtration chips, computational modeling of clinical biomarkers
Diabetes Islet organoids, tri-culture microfluidic pancreas chips, PBPK modeling with diabetes co-morbidities

Cardiovascular hiPSC-derived cardiomyocytes, vascular microfluidics, echocardiography, OCT, MRI
Breast cancer 3D tumor organoid arrays, stromal co-cultures, pharmacogenomic profiling

Colorectal cancer Multi-region tumor organoid biobanks

Table 2: Toxicity Evaluation in Specific Disease Contexts.

Future Outlook

Ongoing progress in new toxicity testing methods is 
poised to transform chemical safety assessment, therapeutic 
screening, and basic mechanistic research in the years 
ahead. Key opportunities center on reducing animal testing 
demands, enabling precision toxicology bridges to clinical 
medicine, and overhauling human health risk assessment.

Opportunities for Reducing Animal Testing 

Evolving beyond traditional animal models promises 
significant ethical and economic dividends. Expanding 
utilization of non-animal systems addresses rising ethical 
concerns, directives like Europe’s ban on cosmetic testing 
in animals, and wider adoption of 3R principles targeting 
replacement, reduction and refinement of animal use [116]. 
In addition, next-generation platforms enhance efficiency for 
drug developers facing swelling preclinical costs and timeline 
pressure. Increased throughput, multiplexing capacity and 
longitudinal assessment in microphysiological organ chips 
and bioengineered tissue surrogates facilitates more rapid 
compound pipeline screening [117,118]. 

Precision Toxicology and Personalized Medicine

Burgeoning techniques also provide tools to advance 
precision toxicology in alignment with the wider personalized 

medicine movement. Human biomimetic platforms, diverse 
model organisms, biobanks and bioprinted tissue replicates 
allow interrogation of individual risk susceptibility variations 
impossible in animal models. High-parameter omics profiling 
and computational modeling integrate unique genetics, 
physiology and exposure factors toward sharply customized 
risk projection. As healthcare increasingly embraces 
molecular phenotyping for tailored interventions, parallel 
adoption in toxicology spheres can link environmental 
influences with biomarker shifts predictive of future disease 
onset [119].

Improved Human Health Risk Assessment

Broader integration of contemporary toxicity 
evaluation systems promises to strengthen chemical risk 
analysis applied in public health policy. Replacements for 
guideline animal studies enable more rapid and economical 
assessment of industrial chemicals, pesticides, consumer 
product ingredients and contamination threats [120]. High-
throughput platforms facilitate evaluation of cumulative 
impacts from the vast array of real-world environmental 
mixtures absent from single chemical testing. Enhanced 
exposure modeling assimilating human activity patterns 
and demographic factors provides sharper projections of 
population-level risks [121].
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Conclusion

This review comprehensively surveys the landscape of 
emerging techniques advancing the field of toxicity testing 
and evaluation. High-throughput human cell platforms, 
microphysiological systems, and bioprinted organ proxies 
offer more predictive alternatives to traditional animal 
models. Expanded model organisms, imaging modalities, 
omics profiling, and computational modeling provide 
multifaceted assessment of exposure impacts on tissue 
structure and function over time. Application in disease 
contexts like diabetes, liver disease, and cancer promise 
improved clinical translation of toxicity findings to 
enable precision risk assessment tailored to individual 
genetic and physiological factors. Taken together, these 
disruptive approaches are poised to transform chemical 
safety evaluation, therapeutic screening, and foundational 
knowledge of biological pathways mediating environmental 
influences on human health.

Recommendations

Realizing the full potential of new toxicity testing methods 
will require cross-sector collaboration to systematically 
validate performance and optimize integration. Expanded 
chemical safety databases incorporating human-specific 
findings should catalyze regulatory acceptance and overhaul 
of risk analysis frameworks centered on animal studies. 
Strategic investment is needed to enhance accessibility of 
advanced platforms for academic researchers and small 
companies through shared facilities and open-access 
biobanks. Educational initiatives can strengthen next-
generation toxicology expertise emerging at the interface 
of tissue engineering, genetics, computing and clinical 
medicine. Overall, harnessing toxicity testing innovations 
promises immense dividends for environmental health, 
drug development, and the wider personalized medicine 
movement, warranting coordinated efforts to accelerate 
progress.
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