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Abstract

Background: Hepatocellular carcinoma (HCC) is a prevalent liver cancer with major risk factors being hepatitis viral infections, 
alcohol, non-alcoholic fatty liver disease, and aflatoxin exposure. Both genotoxic and non-genotoxic agents can induce HCC 
through mechanisms involving DNA damage, oxidative stress, chronic inflammation, and disrupted signaling pathways 
like MAPK/ERK, PI3K/AKT, WNT/β-catenin and PPARα. While rodent assays are utilized to detect potential chemical 
hepatocarcinogens, species differences in pathways like PPARα and CAR/PXR activation impact human risk assessment.
Purpose: This analysis provides an updated, critical examination of species concordance in mechanisms of hepatic 
carcinogenesis to inform human safety assessment of rodent liver tumor findings. 
Main Body: Rodent assays including 2-year bioassays, transgenic models, and short-term studies detect liver tumors through 
lifetime exposure or early biomarkers. However, rodent-specific PPARα and CAR/PXR activation, along with human risk factors 
like hepatitis, highlight key interspecies differences. Determining mode of action relevance requires evaluating mechanistic 
validity and pivotal key events leading to tumors across species. Non-genotoxic compounds eliciting rodent liver tumors can 
activate PPARα, CAR/PXR, and other pathways triggering increased cell replication; but downstream signaling may differ in 
human liver. Understanding applicability of these mechanisms in humans as well as incorporating human risk factors into 
experimental models is critical for accurate risk assessment.
Conclusion: In summary, elucidating conserved versus divergent molecular mechanisms of hepatic carcinogenesis between 
rodents and humans is essential for appropriately interpreting rodent findings and safeguarding human health through 
science-based risk assessment frameworks and regulatory decision-making processes around potential chemical hazards.
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Abbreviations: HCC: Hepatocellular Carcinoma; BCLC: 
Barcelona Clinic Liver Cancer; MAPK: Mitogen-Activated 
Protein Kinase; ERK: Extracellular Signal-Regulated Kinase; 
PI3K: Phosphatidylinositol 3-Kinase; AKT: Protein Kinase B; 
PPARα: Peroxisome Proliferator Activated Receptor Alpha; 
CAR: Constitutive Androstane Receptor; PXR: Pregnane X 
Receptor; ROS: Reactive Oxygen Species; NRF2: Nuclear 
Factor Erythroid 2-Related Factor 2; AFP: α-Fetoprotein; 
GST-P: Glutathione S-Transferase Placental Form; CYP - 
Cytochrome P450; MOA - Mode of Action; ICH - International 
Conference on Harmonisation.

Introduction 

Hepatocellular carcinoma (HCC) is the most common 
type of liver cancer. Major risk factors include chronic 
hepatitis B/C viral infections, alcohol-related cirrhosis, 
non-alcoholic fatty liver disease associated with obesity/
diabetes, and aflatoxin exposure. The pathogenesis involves 
liver injury, inflammation, fibrosis, and ultimately malignant 
transformation [1-5]. For staging HCC, the Barcelona Clinic 
Liver Cancer (BCLC) system is commonly used. It incorporates 
tumor size/spread, liver function, and performance status to 
guide treatment options and predict prognosis. Early stage 
tumors that are small and localized have the best prognosis. 
More advanced stage HCC with vascular invasion or 
metastases has significantly worse outcomes [6]. Treatment 
options are expanding for HCC. For early tumors, resection, 
ablation, or transplant may cure disease. For advanced HCC, 
sorafenib was the first approved targeted therapy inhibiting 
tumor angiogenesis. More recent approaches include 
immunotherapy with checkpoint inhibitors, and other small 
molecule inhibitors targeting pathways like MAPK or PI3K/
AKT. However, advanced HCC still has poor prognosis and 
high recurrence after surgery [7].
 

HCC is warranting extensive investigation into 
mechanisms of chemical-induced liver carcinogenesis and 
translation from preclinical rodent models to human safety 
assessment. Both genotoxic agents directly damaging DNA 
and non-genotoxic compounds disrupting cellular signaling 
without DNA reactivity can promote hepatocarcinogenesis 
through increased cell proliferation, decreased apoptosis, 
oxidative stress, and chronic inflammation [8]. While 
2-year rodent bioassays remain the regulatory standard 
for identifying potential hepatocarcinogens, alternative 
transgenic and short-term rodent models provide supporting 
mechanistic evidence. Emerging omics profiling techniques 
are also enabling more rapid detection of carcinogenic 
hazard based on biomarker screening. However, the 
relevance of rodent liver tumor findings to human risk 
assessment remains a key consideration, requiring detailed 
mode of action analysis to determine species concordance 
in key cellular events promoting transformation, such as 

PPARα or CAR/PXR activation in rodents [9]. Understanding 
interspecies variability and human-specific risk factors 
like hepatitis viral infections is critical. As HCC has a poor 
prognosis at advanced stages, expanded use of molecular 
classification systems for tumor staging along with 
development of emerging immunotherapies and molecularly 
targeted treatments will help combat this aggressive 
malignancy. Overall, progress in preclinical detection of 
hepatocarcinogens along with advances in HCC prevention 
and therapy hinges on elucidating conserved versus species-
specific mechanisms in hepatic carcinogenesis [10].

While extensive reviews exist on chemical-induced 
rodent liver tumors, few have critically examined interspecies 
concordance in mechanisms of hepatic carcinogenesis to 
inform human safety assessment. Therefore, we conducted 
an updated analysis on genotoxic versus non-genotoxic 
mechanisms in hepatocellular transformation, evaluating 
mode of action validity across rodent models and human 
disease through a translational science lens. This focuses 
specifically on areas of convergence versus divergence 
across species that impact interpretation of preclinical 
hepatocarcinogenicity data for human risk evaluation.

Mechanisms of Chemically-Induced 
Hepatocarcinogenesis

Chemical agents can induce liver tumors in rodents 
through both genotoxic and non-genotoxic mechanisms. 
Genotoxic carcinogens cause direct DNA damage that results 
in mutations if not properly repaired. As depicted in Figure 1, 
these mutations can activate oncogenes or inactivate tumor 
suppressor genes, leading to uncontrolled cell proliferation. 
Examples of genotoxic hepatacarcinogens include aflatoxin 
B1, which forms DNA adducts, and vinyl chloride, which 
causes etheno-DNA adducts [11-12]. 

 

Figure 1: Factors-induced hepatocarcinogenesis [11].
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In contrast, non-genotoxic carcinogens induce liver 
tumors through indirect mechanisms without directly 
damaging DNA. These include increased cellular proliferation, 
decreased apoptosis, and induction of epigenetic changes. 
Some key cellular pathways disrupted by non-genotoxic 
carcinogens are MAPK/ERK, PI3K/AKT, WNT/β-catenin, and 
PPARα. For instance, PPARα agonists like WY-14,643 induce 
liver tumors in rodents by activating PPARα target genes 
involved in cell proliferation [13-15].
 

Rodent Models in Safety Assessment of 
Potential Hepatocarcinogens

The traditional rodent bioassay for identifying chemical 
carcinogens involves lifetime Exposure of mice and rats 
to assess increased tumor incidence. These 2-year assays 

expose animals to maximum tolerated doses of the test 
agent starting from 6-8 weeks of age. Tumor formation is 
assessed over the lifespan of the rodents, typically until they 
reach 104 weeks of age. This long duration and use of adult 
rodents makes the traditional assays resource-intensive [16-
18]. To improve efficiency, alternative rodent models have 
been developed using transgenic, neonatal, and short-term 
exposure protocols. Transgenic mouse models with genetic 
modifications such as Ras activation or p53 knockout allow 
carcinogenic assessment within 26-52 weeks. Initiating 
carcinogens can also be detected by exposing rodents during 
the neonatal period when they are most susceptible. Shorter 
6-13 week assays in adult rodents utilize biomarkers, cell 
proliferation, or preneoplastic lesions to identify potential 
carcinogenic activity [19-21].

Model Species Duration Key Features Advantages Limitations
Traditional 

2-year 
bioassay

Rat, 
mouse 2 years

Lifetime exposure 
beginning at adulthood; 

maximum tolerated dose

Gold standard; 
detects tumor 

initiation/promotion
Lengthy, resource intensive

Transgenic Mouse 6-12 months
Genetic modifications 

(e.g. p53-/-, ras 
activation)

Reduced duration; 
mechanistic insights Limited genetic contexts

Neonatal Rat, 
mouse

Days to 
weeks

Exposure begins at 
birth during high 

susceptibility window

Sensitive detection of 
tumor initiators Narrow exposure window

Short-term Rat, 
mouse 6-13 weeks

Biomarkers (AFP, 
GST-P); cell proliferation; 

preneoplastic lesions

Rapid screening; 
reduced animal use

Limited to certain pathways/
mechanisms

Table 1: Comparative overview of rodent models utilized in safety assessment of chemical-induced hepatocarcinogenesis.

Early Detection of Potential 
Hepatocarcinogens

Several approaches have been developed to detect 
potential hepatocarcinogenic activity earlier than traditional 
2-year rodent bioassays. These include biomarker screening, 
genomic analysis, and omics profiling. Two established 
biomarkers used for early detection are α-fetoprotein 
(AFP) and glutathione S-transferase placental form (GST-P). 
AFP is a fetal protein normally silenced in adult livers that 
gets reactivated in hepatocellular carcinoma. GST-P is 
an isozyme not expressed in normal liver but present in 
preneoplastic lesions. Elevated AFP and GST-P levels can 
indicate carcinogenic potential within weeks or months 
[22-28]. Genomic approaches like toxicogenomics measure 
gene expression changes associated with carcinogens. 
Computational tools can analyze this data to create gene 
expression signatures predictive of carcinogenicity. This 
allows for screening of hepatocarcinogens using short-
term in vivo or in vitro assays [29,30]. Emerging omics 

profiling techniques like glycomics and proteomics provide 
additional biomarker signatures. Glycomic analysis of serum 
glycoproteins can detect early liver tumor biomarkers. 
Proteomic analysis of liver tissue or plasma can also reveal 
protein patterns indicative of carcinogenic exposure [31-36].

Species Differences in Response to 
Hepatocarcinogens

Rodent models are important for identifying potential 
carcinogens, but there are key species differences in 
response that impact human risk assessment. One example 
is PPARα agonists, which cause liver tumors in rats and mice 
but not humans. This is because rodent PPARα activates 
cell proliferation genes not affected by human PPARα [37-
38]. Aflatoxin B1 also shows species differences, being 
metabolized to a DNA-reactive epoxide by CYP enzymes in 
humans but not rats. Chronic hepatitis B and C viral infection 
is another major risk factor for hepatocellular carcinoma in 
humans with no rodent equivalent. The viruses themselves 

https://medwinpublishers.com/ACT/
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are not direct carcinogens but promote cancer by causing 
chronic inflammation and fibrosis [39-44]. To help bridge 
these species gaps, humanized animal models are being 
developed. An example is the PXB mouse model containing 
human PPARα, CYP enzymes, and a functional hepatitis B 

virus pathway. The PXB mice better predict human-specific 
PPARα and aflatoxin responses. Humanized models help 
incorporate key aspects of human physiology and better 
extrapolate rodent data to potential human risk [45-46] 
(Table 2).

Factor Rodent Response Human Response Implications for Risk Assessment
PPARα activa-

tion
Tumor promoter through cell pro-

liferation genes
No activation of rodent tumor 

genes
Not relevant to human; MOA not 

operative

Aflatoxin B1 Bioactivated to less carcinogenic 
metabolites

CYP conversion to DNA-reac-
tive epoxide Human more sensitive than rodents

Hepatitis virus No equivalent infection models Major risk factor for HCC Significant species difference in 
tumor susceptibility

Table 2: Comparative analysis of key rodent-human differences impacting hepatocarcinogen risk assessment.

Non-Genotoxic Hepatocarcinogenesis

Some compounds induce liver tumors in rodents 
through non-genotoxic mechanisms not involving direct 
DNA damage. One example is activation of the nuclear 
receptor PPARα. PPARα regulates cell proliferation and 
inflammation genes in rodent liver. Chemical activation of 
PPARα results in increased cell replication that can progress 
to liver tumors. However, human PPARα does not regulate 
the same target genes, so this mode of action is not relevant 
for human risk. Another non-genotoxic mechanism involves 
activation of constitutive androstane receptor (CAR) and 
pregnane X receptor (PXR). Phenobarbital activates CAR/
PXR leading to liver tumors in rodents through increased 
cell proliferation and decreased apoptosis. While CAR/PXR 
activation is an early key event, the downstream key events 
leading to tumors may differ between rodents and humans 
[47]. For non-genotoxic compounds like PPARα and CAR/
PXR activators, the relevance of rodent liver tumors to 
human risk is determined through mode of action analysis. 
This involves determining the key events in tumor formation 
and if they occur in humans. If the mode of action is plausible 
in humans, the rodent findings indicate potential human 
carcinogenicity [48].
 

Regulatory Perspectives Regarding 
Hepatocarcinogens

The ICH S1 guidance provides recommendations for 
detecting potential carcinogenic activity in pharmaceuticals. 
It advises using two rodent species, typically rat and mouse, 
for lifetime 2-year carcinogenicity studies. This allows 
comprehensive assessment of tumor findings and potential 
risk to humans [49-52]. A key regulatory consideration is 
determining if a carcinogen acts through a genotoxic or non-
genotoxic mode of action. Genotoxicity studies like Ames 
tests, chromosome aberration, and micronucleus assays are 

used to assess if DNA damage is the initiating key event. This 
informs whether a threshold or linear non-threshold model 
should be used for human cancer risk assessment [53-55].
 

Future Directions 

Further research is critically needed to elucidate 
conserved versus divergent molecular mechanisms of 
hepatic carcinogenesis between rodents and humans. A key 
priority should be investigating species-specific differences 
in pivotal signaling pathways like MAPK/ERK, WNT/β-
catenin, and nuclear receptors that modulate downstream 
events affecting cell proliferation, apoptosis, inflammation, 
and other cancer hallmarks. Incorporating complex human 
risk factors into experimental rodent models is also 
essential, particularly development of humanized mouse 
models containing both human drug metabolizing enzymes 
and functional hepatitis virus pathways to better model 
susceptibility [56]. Additionally, emerging omics profiling 
approaches including transcriptomics, proteomics, and 
metabolomics provide tremendous promise for elucidating 
biomarker signatures that are predictive of liver tumor 
development, progression, and human translation. Applying 
machine learning to develop computational tools from these 
multidimensional datasets can further aid mechanistic 
analysis and human risk assessment [57]. Further 
investigation into the role of the tumor microenvironment in 
modulating hepatocarcinogenesis and therapeutic response 
is also imperative. Examining bidirectional signaling 
between malignant hepatic cells and non-malignant stromal 
cell types such as fibroblasts, immune cells, and vascular 
endothelium may unveil new targets. Finally, development 
of additional alternative rodent models including patient-
derived xenografts and 3D organoid culture systems 
can complement traditional 2-year bioassays and assess 
improved recapitulation of human physiology [58].
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Conclusions 

Both genotoxic and non-genotoxic mechanisms can 
promote hepatocarcinogenesis in rodent models through 
pathways modulating DNA damage, oxidative stress, chronic 
inflammation, and disrupted signaling cascades affecting cell 
proliferation and death. However, critical species differences 
exist, particularly in key events such as PPARα and CAR/
PXR activation that may not be operative or lead to the same 
downstream signaling in human liver. Therefore, careful 
mode of action analysis is imperative for determining rodent 
liver tumor relevance and human risk, requiring evaluation 
of the pivotal key events from tumor initiation to progression 
and their conservation across species. Elucidating areas of 
convergence versus divergence through emerging omics 
techniques and humanized animal models is essential 
to inform science-based public health decisions around 
potential chemical hazards.

Recommendations

• Investigating species-specific differences in pivotal 
signaling pathways like MAPK/ERK, WNT/β-catenin, 
and nuclear receptors that modulate downstream 
cellular events affecting malignant transformation

• Incorporating complex human risk factors like hepatitis 
B/C infection into experimental rodent models through 
humanized mice or other systems

• Applying emerging omics techniques and machine 
learning to uncover biomarker signatures predictive of 
carcinogenic potential and human translation 

• Examining the role of the hepatic tumor 
microenvironment and interactions between malignant 
and non-malignant cells

• Expanding the utility of alternative rodent models such 
as patient-derived xenografts and 3D organoid culture to 
complement traditional 2-year bioassays

• Focusing greater efforts on epidemiology and surveillance 
of human exposures to suspected hepatocarcinogens to 
enable more accurate risk assessment

• Developing defined frameworks and recommendations 
to standardize mode of action analysis and determination 
of rodent liver tumor human relevance
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