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Abstract 

Archeological studies describe that human cognition evolved with the increase in human brain size. Evidence also 

suggests that our ancestors’ diet, which was a high-energy-nutrient-dense diet, contributed significantly to the 

complexity of the brain as dietary components act as structural and functional precursors. Therefore, the brain requires a 

repertoire of nutrient-dense food to grow, maintain and repair different brain structures. Additionally, ancestor males 

and females had different physical responsibilities that may have necessitated different energy requirements and may 

have led to a disparity in food consumption. Therefore, the gender-based differential food consumption of our ancestors 

and their energy intake may explain the differential brain connectivity between human males and females. Therefore, a 

potential mismatch may exist today between contemporary diet and the evolved brain which may be contributing to 

cognitive decline and mental distress in humans. Hence, the purpose of this review is to explore the evidence in the 

literature that potentially supports this hypothesis to better understand the role of diet on brain health. 
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Derived Neurotrophic Factor; OS: Oxidative Stress. 
 
 

Introduction  

    The notion of “you are what you eat” has increasingly 
been proven accurate as the field of nutritional science 
and nutritional genomics decipher the role of nutrients at 
the cellular and molecular levels. However, “you are what 
your brain eats” is a novel concept. The emerging field of 
nutritional neuroscience is laying the ground for work on 
the effect of diet on brain structures and health.  
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     The diet provides structural and functional precursors 
needed for optimal brain health [1]. Therefore, dietary 
patterns may influence different brain functions. 
Epidemiological studies link the Western diet (WD) to 
mental disease and cognitive decline while the 
Mediterranean diet (MD) typically associates with mental 
wellbeing and improved cognitive functions [2,3]. 
Neurocognitive deficits typically associate with many 
neuropsychiatric disorders; therefore, these conditions 
often need to be evaluated concomitantly. Fossil and 
archeological studies reveal that human cognition evolved 
with the increase in human brain size [4]. Evidence also 
suggests that our ancestors’ diet, which was a high-
energy-nutrient-dense diet, contributed significantly to 
the increase in brain size and cognitive evolution [5]. 
Additionally, males and females had different physical 
responsibilities that may have necessitated different 
energy requirements. Thus, gender-based differential 
food and energy intake may explain the differential brain 
connectivity between females and males [6]. Therefore, a 
mismatch between the quality of our ancestors’ and 
contemporary diets may be at the heart of cognitive 
decline and mental health. Hence, the purpose of this 
review is to explore the evidence in the literature that 
potentially supports this hypothesis to better understand 
the role of diet on brain health. 
 

The Evolution of the Human Brain  

     To gain insights into the evolution of brain size with the 
emergence of the genus Homo, anthropologists used an 
energetic approach to compare the energy demands 
associated with brain size in modern humans relative to 
hominin fossil records. There is substantial evidence 
supporting the notion that dietary components played a 
significant role in the evolution of the human brain 
[5,7,8]. Studies of hominin fossil and dental records 
suggest that feeding adaptations 
and food preferences were part of human evolution as 
well [9,10]. Additionally, archives were examined to 
assess changes in brain size, and dietary patterns 
associated with the evolution of early Homo. One evident 
fact is that the brain evolved to be a high metabolic organ. 
A sizable percentage of the human nutritional 
requirements are linked to the energy demands of human 
large brains, which are about 16 times that of the skeletal 
muscle [11]. Several studies support the link between 
brain size and dietary quality. A positive relationship 
between relative brain size and dietary quality exists for 
early humans [12]. In addition, there is a strong positive 
relationship between nutrient density and the amount of 
energy allocated to the brain [13]. Humans tend to be at 

the positive extremes for both criteria, having the largest 
relative brain size and the highest quality diet. Therefore, 
the evolution of larger hominin brains may have 
necessitated a consumption of a nutrient-dense diet to 
support the increased metabolic demands of 
encephalization. This notion is further supported by the 
different dimensions and anatomy of the human 
gastrointestinal (GI) tract that reflect an adaptation to 
digestion and absorption of a diverse high-quality diet 
[14]. Together, these data suggest that the consumption of 
a nutrient-dense diet stimulated the expansion of brain 
size over the course of human evolution. Therefore, a 
high-quality diet may be needed to maintain the integrity 
of the contemporary human brain. 
 

The Limbic System and the Pre-Frontal Cortex 

     The limbic system (LS) has been described to be among 
the oldest brain structures based on a phyletical 
classification. LS controls basic functions such memory, 
emotions and behaviors (including motivation and 
arousal). Although LS is wired to stimulate strong 
emotions, a balance between neuro-activation and neuro-
inhibition of the limbic system is in place to keep the 
extreme emotions at bay [15]. This rheostat is further 
underlined by the evolution of the prefrontal cortex (PC) 
which is critical to many cognitive abilities. PC evolution 
is believed to involve specific reorganization of neural 
circuitry in response to specific selection pressures. 
Consequently, the cortical-limbic circuit (CLC) 
connectivity supports further regulation of emotions by 
empirically processing environmental cues to keep 
negative emotions under control [16]. Based on 
phylogenetically characterization of frontal cortical 
circuitry, there is evidence that indicates that this part of 
the brain is among the most recent evolved parts [17]. 
Therefore, abnormal PC development induces 
abnormalities in the CLC connectivity leading to 
psychiatric disorders and neurological disorders. 
 

Male Versus Female Brain 

     Although the sexual dimorphism of the brain is still 
debated in the literature, there is a strong evidence that 
functionality of female and male brains differ [18-20]. 
Many reports that describe the gender-based difference in 
the human brain attribute the disparity to selection 
pressure as part of evolution. Variability of social life, 
human behavior and parenting role necessitated 
differential cognitive requirements [21,22]. However, a 
very recent report describes the diet as being the major 
contributor to brain evolution [5]. Additionally, 
differential physical demands of human males and 
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females may have dictated preference for food 
consumption through evolution. Functionality of brain 
circuits may represent connectivity between regions, type 
of circuitry activation and brain region recruitment under 
certain tasks. With the emergence of the epigenetic field, 
better insights were gained on the mechanisms of dietary 
adaptations. Therefore, dietary patterns between males 
and females may have played and may continue to play a 
role in brain health. Consequently, failure to meet the 
high-quality nutrient demands of the contemporary brain 
may be the root cause of cognitive decline and mental 
disease in humans. In addition, it may also support the 
evidence in the literature that describes that females have 
a higher risk for anxiety and depression compared to 
males while males carry the higher risk for developing 
schizophrenia [23]. 
 

Grey Versus White Matter: Why do they Matter? 

     The central nervous system consists of two distinct 
types of tissues, grey matter (GM) and white matter 
(WM). GM is concentrated in information-processing 
areas such as the cerebral cortex and the limbic system 
while WM represents the network connectivity with the 
processing regions. Although there are conflicting reports 
in the literature on the actual GM and WM densities 
between female and male brain, the consensus is that 
women have thicker GM in the cortices, potentially more 
WM connecting with subcortical regions and smaller 
amygdala volume compared to men[24-27]. On the other 
hand, men tend to have more GM in the subcortical 
regions; however the hippocampus is not sexually-
dimorphic [28]. Therefore, females may require a larger 
repertoire of nutrients compared to men to maintain the 
larger complex connectivity in their brain [29]. 
 

The Hippocampus  

     The hippocampus, part of the limbic system, mostly 
comprises of GM. It houses nerve fibers, hippocampal 
pyramidal cells, cell bodies of interneurons and an 
elaborate dendritic meshwork. Additionally, the 
hippocampus controls spatial learning, declarative 
memory, and emotions. Therefore, the hippocampus is an 
integral junction between different brain regions essential 
for cognitive function and mood regulation [30]. The 
hippocampus grows afferent neural circuit with emotion-
related brain regions, such as the pre-frontal cortex (PC) 
and the amygdala. While the PC rationalizes emotions, the 
amygdala is responsible for the fear conditioning. 
Therefore, an optimal CLC circuitry is critical for 
regulation of emotions and mood. The hippocampus has 

extensive glucocorticoid and glutamate receptors that 
modulate the hypothalamic-pituitary-adrenal (HPA) axis 
activity. Chronic stress-induced hyperactivity of HPA axis 
leads to structural damages in key brain regions, 
including the hippocampus. Consequently, HPA 
dysregulation induces hippocampal atrophy secondary to 
alterations in neurochemistry and neuroplasticity [31]. 
Moreover, mental distress negatively impacts CLC which 
induces abnormal amygdala functional connectivity in 
areas that integrate affective processes [32]. Therefore, 
structural and functional disturbances in these brain 
regions increase risk of cognitive decline and mental 
distress [33,34].  
 

Hippocampal Atrophy 

     Reduction in hippocampal volume may be an age-
related phenomenon but may result from pathological 
conditions as well. In both instances, hippocampal 
atrophy relates to structural abnormalities and associates 
with cognitive decline and depressive symptoms [35,36]. 
Multiple theories have been proposed to explain the 
etiology behind the reduction in hippocampal volume 
including poor diet, stress and lack of neurotrophic 
factors [37-39]. However, a poor diet can exacerbate the 
effect of stress and can further decrease neurotrophic 
factor release [37]. This fact is evidenced by many reports 
that describe the etiology behind an unhealthy diet in 
promotion of cognitive decline and mental disorders 
[2,40,41]. Equally, emerging reports support the role of an 
MD in reducing risk of anxiety and depression as well as 
of cognitive decline [42-44]. Although hippocampal 
atrophy could be due to an amalgamation of homeostatic 
disturbances, a healthy diet has the potential to reduce 
inflammation, oxidative stress and improve neurogenesis 
necessary for promotion a healthy hippocampal volume 
[45-47]. In fact, large hippocampal volume in men 
associates with increased behavioral inhibition such as 
regulation of defensive approach behaviors and anxiety 
traits [48]. Taken all together, deficiencies of key 
nutrients necessary for the dynamics of hippocampal 
neurogenesis and synaptogenesis may impact cognitive 
functions and mental health [49,50]. 
 

Cortical Thickness 

     Cortical thickness has been linked to higher cognitive 
abilities and mental wellbeing in human models [51]. The 
frontal cortex region regulates impulsivity, emotions and 
other aspects of executive functions [52]. Consequently, 
The thickness of cortices produces an efficient control 
over the subcortical amygdala-hippocampal system that 
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jointly regulates mental wellbeing [53]. The thickness of 
the cerebral cortex is dependent on the density of GM and 
sub-WM structures. The dense WM fibers, part of the CLC, 
are critical for regulation of emotional information. 
Reduced GM volume in PC regions and/or WM lesions in 
the CLC induce dysregulation of the limbic system. 
Subsequently, hyper-activation of the amygdala leads to 
mental diseases [54-56]. Furthermore, cerebral cortical 
structural abnormalities, including a decrease in cortical 
thickness, associate with major depressive disorders and 
other psychiatric conditions [57,58]. However, activities 
that increase cortical thickness, such as meditation and 
exercise, improve cognitive function and mental 
wellbeing [59-61].  
 

Diet and Cortical Thickness 

     Several dietary bioactive compounds promote cortical 
thickness. Macronutrients and micronutrients of MD 
strongly correlate with brain cortical thickness [62]. Fish, 
nuts, leafy vegetables, low intake of meat and olive oil 
were described to contribute to cortical thickness and to a 
slower rate of brain volume loss [63]. Increasing evidence 
suggests that adherence to MD may be inducing 
epigenetic modifications protective against mental 
disease and cognitive decline with a trans-generational 
effect [1,64,65]. Epigenetic modifications in key genes 
may confer protection against day-to-day and seasonal 
alterations in dietary patterns inducing resilience against 
minor cellular insults. The MD is also rich in folate which 
is an integral part of the one-carbon metabolism pathway 
(OCMP). In the OCMP, 5-methyl tetrahydrofolate assists 
with generation of S-adenosylmethionine (SAM), the 
universal methyl donor for DNA and histone methylation 
reactions as well as for dopamine biosynthesis [66]. 
Epigenetic modifications are increasingly explaining 
causality of complex diseases. Adaptation to 
environmental factors, including diet, modulates cellular 
signaling to alter gene expression. Therefore, the 
epigenome is a potential contributor to cognitive function 
and mental health [67]. Consequently, a competent OCMP 
has the potential to promote dopamine biosynthesis as 
well as to induce advantageous epigenetics marks that 
support mental wellbeing and cognitive functions. 
  

The Western Diet 

     The hallmark of WD are fast food, meat and starchy 
carbohydrates. WD is typically devoid of a spectrum of 
nutrients needed for optimal brain structure and function 
(such as omega-3 fats, polyphenols and antioxidants). 
Deficiencies of these nutrients increase risk of mental 

distress and promote brain atrophy [2]. Aging is a risk 
factor for hippocampal atrophy due to increased brain 
oxidative stress with age [68]. However, consumption of a 
WD seems to accelerate brain atrophy. A cross-sectional 
study included 5731 mid-aged and older participants 
reported that a Western-diet style associated with anxiety 
in men and women. Conversely, a healthy diet quality 
score was inversely associated with depression and 
anxiety [69]. In a four-year longitudinal study, led by the 
same research team, individuals who followed ‘an 
unhealthy diet’ similar to WD exhibited a rapid atrophy of 
the left and right hippocampi [37]. Therefore, regular 
consumption of WD with age may induce rapid brain 
structural changes that could potentially lead to cognitive 
decline and mental distress. Additionally, consumption of 
animal lipids with age may increase serum low density 
lipoprotein (LDL). LDL is commonly known as the ‘bad 
cholesterol’ because it comprises of high ratio of lipids to 
protein; hence the low-density nomenclature. Therefore, 
LDL is intrinsically prone to oxidation which may start the 
process of atherogenesis [70]. Atherosclerosis is an age-
dependent phenomenon, and build-up of plaque in 
cerebral arteries has been linked to neurodegenerative 
diseases and brain atrophy [71,72]. Nevertheless, a 
Swedish study also reported a negative association 
between meat intake and brain volumes in older adults 
and a positive association with eicosapentaenoic acid 
(EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) 
from marine fish [73]. Although meat consumption may 
be beneficial for mental wellbeing in younger adults as 
depicted previously from our laboratory, it may be not as 
much advantageous with increasing age [74]. However, 
many factors could dictate individual responses to animal 
fat consumption like genetic factors (such Apo E4 
genotype) and diseases that promote vascular 
pathogenesis (such as diabetes and cardiovascular 
diseases) [75,76]. 
 

Marine Fish Fat: The Forgotten Shield 

     With the emergence of fish farming and the increasing 
reports about potential mercury contamination of marine 
fish, farm-raised fish (FRF) are becoming a growing 
commodity. Unlike marine fish, FRF may be devoid of EPA 
and DHA when marine ingredients in FRF diets are 
replaced with non-marine feed. EPA and DHA are 
essential fats from the omega-3 family which contribute 
significantly to brain health. DHA promotes neurite 
outgrowth in the hippocampus and synaptic function [77]. 
DHA has gained lots of interest from the scientific 
community for its role in the evolution of the human 
intelligence and higher cognitive functions [8,78,79]. 
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Additionally, DHA controls a wide-spectrum of 
physiological processes including neurotransmitter 
release, transmembrane receptor function, intracellular 
signaling, axon myelination, neuroinflammation, and 
neuronal differentiation [80]. It is mostly located in 
membrane phospholipids and especially concentrated 
in GM which contributes extensively to subcortical 
volume [81]. Therefore, deficiency in DHA may induce 
homeostatic disturbances potentially by altering synaptic 
transmission and reducing GM volume [82,83]. EPA also 
plays a significant role in maintaining functional 
integrities of brain structures. EPA mediates 
neuroprotective functions through cascade of cellular 
events that culminate in the production of anti-
inflammatory molecules [84]. Both EPA and DHA 
contribute anti-oxidative stress, anti-apoptotic and pro-
neurogenesis properties [49]. Furthermore, EPA 
promotes proliferation of progenitor neural cells while 
DHA stimulates their differentiation [85]. 
 
     Considering this information jointly, the combination of 
EPA and DHA deficiencies in the WD may have a 
significant effect on the HC and the subsequent cross-talk 
with the amygdala. The innate brain clock coupled with 
reduction in neurogenesis culminate in atrophy of 
subcortical brain regions over time that increases risk of 
mental distress in humans. This proposed scenario may 
suggest that absence of dietary components that support 
the structural integrity of the GM in the limbic system 
may increase risk of cognitive functions and mental 
distress with age.  
 

Effect of an Active Lifestyle 

     It is well known that our ancestors led a very active 
lifestyle. Therefore, physical activity may have 
contributed to the evolution of the brain [86]. Physical 
exercise (PE) promotes constant cognitive and motor 
functions which lead to increased neuroplasticity in the 
human brain. The positive effects of PE are described to 
be mediated via Brain-Derived Neurotrophic Factor 
(BDNF). BDNF is a growth factor that reinforces 
synaptogenesis and neurogenesis which preserve existing 
structures and promote brain volume, respectively. 
Therefore, regular PE may avert some of the changes in 
hippocampal synaptic plasticity and may promote 
hippocampal volume preservation [87]. Similarly, BDNF 
controls emotional learning in the amygdala and 
enhances neurotransmission [88]. Therefore, absence of 
exercise in the contemporary societies contributes to the 
swift decline in hippocampal volume and to dysregulation 
of amygdala functionality [89]. Additionally, WD is 

deficient in essential nutrients and antioxidants needed to 
fight oxidative stress (OS). OS in the brain, which typically 
increases with age and reduces levels of BDNF; 
accordingly, it adds to the absence of neuroplasticity [90]. 
 

Conclusion 

     Based on the collective evidence, it appears that there 
is a mismatch between the evolved brain and the modern 
diet and lifestyle. The evidence suggests that nutrient-
dense diets and an active lifestyle led to the evolution of 
the human brain and to the development of complex 
neural circuitry that control cognitive functions and 
emotions. In return, this complex network requires ample 
of high-quality dietary components that contribute to the 
growth, maintenance and repair of brain structures. 
Additionally, it appears that the sexual dimorphic state of 
brain connectivity may be adding to the differential 
dietary needs between male and female brain. Although, it 
is commonly known that eating healthy and exercising are 
warranted for a healthy body and mind, this review 
provides compelling evidence that describes the 
disturbances that ensue in the human brain from a poor 
diet and lack of physical activity. These disturbances, as 
described in the literature, are linked to cognitive decline 
and mental distress in contemporary humans.  
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