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Editorial 

Resistance to small molecule antibiotics has posed a 
major threat to healthcare due to lack of available next 
generation antibiotics. Particularly, the infamous 
“superbugs” infections are not only difficult to treat, but 
also present high reoccurring rates and persistent biofilm 
problems, causing complication in treatment and 
prevention in community, hospital, as well as other 
setting. 

 
Antimicrobial peptides (AMPs) are a class of naturally 

occurring peptides produced by organisms across 
multiple kingdoms to defend the host against the invading 
pathogen. AMPs offer great alternatives to develop the 
next generation antimicrobial agents. Today, there are 
3140 naturally occurring and synthetic antimicrobial 
peptides identified from six kingdoms according to The 
Antimicrobial Peptide Database (APD) [1-3], presenting a 
good arsenal against microbial infection and providing a 
wide selection for antimicrobial drug development. 

 
Computational approach to design new antimicrobial 

peptides can be dated to early 2000. Due to many shared 
biophysical properties and similar mechanisms of actions, 
computational design and machine learning have become 
very popular tools to generate new, ideally more active 

peptides [4,5]. To date, several methods have been 
developed for computational design of antimicrobial 
peptides. Generally, these can be categorized into two 
approaches: classification algorithms and regression 
approaches. Classification algorithms predict if a peptide 
will be antimicrobial or not based on the peptide 
sequence. Examples are AMP Scanner v2 and AMP pred 
[6,7]. Regression approaches predict quantitatively the 
antimicrobial activity of a candidate peptide based on 
peptide structure and biophysical properties, oftentimes 
used to optimize a local sequence and/or a specific known 
scaffold [8,9]. 

 
While both approaches are valid and well-practiced, 

these are the questions that we should really ask 
ourselves: Can computer algorithms think independently 
without human input? Without human input, can 
computer algorithms think independently to provide 
objective recommendation?. With all advances in artificial 
intelligence, can a computer design an algorithm on its 
own without human intervention and manipulation?. 

 
Other areas that are often neglected by the 

computational design strategy are prediction of toxicity, 
pharmacodynamics and pharmacokinetic profiles, 
therapeutic index optimization in the clinical setting (in 
comparison and complement with therapeutic index 
obtained in vitro), physico chemical properties hindering 
successful formulation and trade-off with antimicrobial 
activity. These problems are often detected by human 
experiments and observation. Recently, additional 
algorithms have been developed to address the prediction 
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of in vitro toxicity; however these are still not sufficient to 
predict in vivo toxicity [10]. 

 
The most recent Giant Repository of AMP Activity 

(GRAMPA) algorithm by Witten and Witten at MIT was 
developed to improve the above-mentioned approaches 
by combining a large dataset with a regression model to 
design AMPs with a low predicted minimum inhibitory 
concentration (MIC), and then further train convolutional 
neural network (CNN) models for AMP activity prediction 
[11]. While this approach yields promising candidates 
with novel sequences, the same prediction problems will 
still need to be resolved prior to preclinical studies. Until 
these problems can be resolved, we still have a long 
journey toward effective computational design of 
antimicrobial peptides without a need for experimental 
validation. 

 
The general consensus in antimicrobial research 

mostly perceives computational approaches as a next 
generation tool to objectively design novel antimicrobial 
peptides. In reality, how objective machine learning and 
artificial intelligence can be and will be still remains 
undetermined. Moreover, machine learning and artificial 
intelligence lack human creativity, and ironically this 
creativity is often needed in scientific research, albeit 
contrary to much desired objectivity in the scientific 
research community. We need to move beyond designing 
more active antimicrobial peptides via classification 
algorithms and regression approaches by iteratively 
improving our prediction algorithms of other preclinical 
studies parameters in complement. Using computational 
design is a good strategy to find novel antimicrobials to 
overcome antibiotic resistance problems among many 
others but is still far away from replacing human design. 
In my opinion, both computational and human designs are 
complementary and mutually inclusive. We need both 
approaches to identify next generation antimicrobials to 
continue this ongoing battle. 
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