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Abstract 

In the last three decades with the increasing evidence regarding molecular basis of channellopathies, there was an 

impressive interest and revival of quinidine therapy due to the unique pharmacological multichannel properties of the 

drug. Currently available data from observational studies and small reports suggest that quinidine may represent a 

potential treatment option for ventricular fibrillation either idiopathic or associated to other channellopaties. Quinidine 

shows a very complex profile of electrophysiological effects that is still not completely understood. The principal 

therapeutic action of quinidine in patients with either ventricular or atrial arrhythmias is to cause frequency-dependent 

increases in relative tissue refractoriness, leading to interruption of reentry. Prolongation of the ventricular effective 

refractory period in relation to the duration of the action potential is strongly dependent on frequency and is correlated 

with the suppression of ventricular tachycardia. Slowing of conduction may also contribute to the antiarrhythmic action 

of quinidine. This pharmacological agent remains one of the oldest cardiac drugs still available in the modern era of 

antiarrhythmic therapy, although not in every country. Currently, quinidine has been proved to be a live-saving 

antiarrhythmic drug able to control ventricular tachycardias and ventricular fibrillations in patients with 

channellopathies, specially the Brugada’s syndrome. The therapy of VF with electrophysiologically-guided quinidine may 

be implemented after demonstrating that VF is no longer inducible after quinidine therapy. Drug therapy with quinidine 

in ICD patients is usually beneficial by reducing the frequency of appropriate shocks, which can improve the patient's 

quality of life. Nowadays, quinidine is not only useful in VF-related channellopathies, but it is also a lifesaving 

pharmacological agents in these patients. Therefore, Quinidine should be available in every hospital, in every drug store, 

anywhere in the world. 
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Introduction 

Since quinidine was first described, the drug has been 
used in the treatment of almost all cardiac arrhythmias, 
particularly atrial fibrillation [1]. There has been a 
notorious decreased in clinical prescription in the last two 
decades mainly due to the concern of side effects such as 
pro-arrhythmia, leading to increased mortality, and to the 
availability of newer anti-arrhythmic drug agents, as well 
as, catheter based ablation therapy [2-5]. However, in the 
last three decades with the increasing evidence regarding 
molecular basis of channellopathies, there was an 
impressive interest and revival of quinidine therapy due 
to the unique pharmacological multichannel properties of 
the drug. Currently available data from observational 
studies and small reports suggest that quinidine may 
represent a potential treatment option for ventricular 
fibrillation either idiopathic or associated to other 
channellopaties [6-9]. 

 
 Quinidine shows a very complex profile of 

electrophysiological effects that is still not completely 
understood. The principal therapeutic action of quinidine 
in patients with either ventricular or atrial arrhythmias is 
to cause frequency-dependent increases in relative tissue 
refractoriness, leading to interruption of reentry. 
Prolongation of the ventricular effective refractory period 
in relation to the duration of the action potential is 
strongly dependent on frequency and is correlated with 
the suppression of ventricular tachycardia. Slowing of 
conduction may also contribute to the antiarrhythmic 
action of quinidine [10-14]. This pharmacological agent 
remains one of the oldest cardiac drugs still available in 
the modern era of antiarrhythmic therapy, although not in 
every country. Quinidine is considered a Class I, 
membrane stabilizing antiarrhythmic agent. Quinidine 
decreases the phase zero of rapid depolarization of the 
action potential by blocking the rapid sodium channel. It 
is further sub-classified as Class IA drug due to its 
intermediate offset kinetics, namely, time constants for 
recovery from block. Therefore, the effect on conduction 
velocity is more pronounced in comparison to Class IB, 
but lower compared to Class IC agents.  
 

ICD therapy is the treatment of choice for patients 
with both primary and secondary prevention in 
ventricular fibrillation-related channellopathies, with the 
role of antiarrhythmic therapy aimed at reducing the 
number of recurrences. However, implantable devices do 

not prevent arrhythmias, thus, patients who have 
frequent symptoms or device discharges from recurrent 
arrhythmias may benefit from adjunctive anti-arrhythmic 
drug therapy. Although ICD implantation is the treatment 
of choice in IVF patients, in this short communication, we 
will discuss the current role of quinidine in the 
therapeutic management of ventricular fibrillation in 
certain channellopaties. 
 

Pharmacological and Clinical Effects of 
Quinidine 

The alkaloid quinidine represents the D-isomer of the 
antimalarial drug quinine and can be derived from the 
bark of the cinchona tree. Quinidine sulfate or gluconate, 
and quinidine polygalacturonate darken when exposed to 
light. Therefore, these substances should be stored in 
well-closed, opaque containers. Solutions of quinidine 
salts acquire a brownish tint under impact of light [15]. 
Quinidine depresses the maximal upstroke velocity of the 
action potential due to the drug-induced inhibition of the 
rapid inward sodium current [16]. The extent of such 
upstroke slowing was greater at higher pacing 
frequencies, a finding that contributed to the formulation 
of the modulated-receptor hypothesis [17,18]. Therefore, 
the affinity of a channel-associated receptor for a certain 
drug is modulated by the state of the channel, with use-
dependent blockade being a result of higher affinity for 
open, or inactivated, channels than for resting channels 
[18].  

 
Sodium-channel blockade by quinidine follows 

specific, saturable binding to defined receptor sites, which 
are now being characterized with the use of molecular 
approaches [19-22]. Quinidine was found to have multi-
channel blocking properties. It also inhibits many 
potassium channels in cardiac tissue, and clinically 
relevant effects are thought to be due to suppression of 
the repolarizing delayed rectifier current. This current 
has at least three distinct components, and quinidine 
exerts its most important effects by inhibiting the rapidly 
activating component, IKr [23-27]. Besides blocking the 
INa, quinidine reduces repolarizing K+ currents (IKr, IKs), 
the inward rectifier (IK1), and the transient outward 
current Ito [5]. Furthermore, quinidine reduces the L-type 
ICa and the late INa inward currents that are responsible 
for the plateau phase two of the action potential. 
Altogether these complex effects result in a prolongation 
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of the action potential duration that is more pronounced 
at slower heart rates. It is of clinical relevance that 
quinidine changes the morphology of the ventricular 
action potential to a triangular shape by shortening the 
plateau but prolonging the late depolarization, facilitating 
the formation of early after-depolarization. In addition, 
quinidine seems to have effects on the spatial dispersion 
of ventricular repolarization [5].  

 
In patients with either congenital or acquired long-QT 

syndromes, impaired IKr function is strongly implicated 
in the development of torsade de pointes [28,29]. The 
ultrarapid component of the delayed rectifier potassium 
current is also inhibited at therapeutic concentrations of 
quinidine; this may have a role in the beneficial effects of 
this Class I drug agent [25]. The quinidine-induced 
blockade of delayed rectifier potassium channels, like that 
of sodium channels, is attributable to binding at a site 
within the inner pore of the channel [30,31]. Binding to 
this receptor is also modulated with respect to time and 
voltage. However, because the “reverse use dependence” 
effect, at slow rates, there is often greater receptor 
occupancy in the potassium channel than in the sodium 
channel, and repolarization is consequently prolonged 
[32-34]. The precise mechanisms underlying this 
phenomenon are uncertain, but enhanced receptor 
binding of quinidine may occur when the heart rate is low 
as a result of reduced accumulation of extracellular 
potassium [33-35]. 

Available therapy for VF patients may include ICD 
implantation, drug therapy, radiofrequency catheter 
ablation of the triggering focus or combinations of the 
above. Secondary and primary prevention trials have 
demonstrated the superiority of ICD compared with 
antiarrhythmic medication in preventing death. ICD 
therapy is the treatment of choice for patients with both 
primary and secondary prevention with the role of 
antiarrhythmic therapy aimed at reducing the number of 
recurrences. Implantable devices do not prevent 
arrhythmias, thus, patients who have frequent symptoms 
or device discharges from recurrent arrhythmias may 
benefit from adjunctive anti-arrhythmic drug therapy 
with quinidine. This drug agent shows a very complex 
profile of electrophysiological effects that is still not 
completely understood. The principal therapeutic action 
of quinidine in patients with either ventricular or atrial 
arrhythmias is to cause frequency-dependent increases in 
relative tissue refractoriness, leading to interruption of 
reentry [19-20]. Prolongation of the ventricular effective 
refractory period in relation to the duration of the action 
potential is strongly dependent on frequency and is 
correlated with the suppression of ventricular 

tachycardia [36]. Slowing of conduction may also 
contribute to the antiarrhythmic action of quinidine. 
Moreover, quinidine impairs impulse conduction across 
ischemic gaps, and Purkinje system-muscle junctions, 
suggesting further contributing mechanisms to the 
interruption of reentry in pathological tissue with 
electrophysiological alterations [37-40]. 

 
Due to quinidine´s complex cellular effects, it provides 

a wide range of activity influencing both reentrant as well 
as ectopic supraventricular and ventricular arrhythmias. 
The therapeutic effects are probably based on the 
prolonged effective refractory period and increased 
action potential duration in atrial and ventricular cells 
and in the His-Purkinje system. It is relevant that the 
affected cardiac tissue remains refractory even after 
restoration of the resting membrane potential because 
the prolongation of the effective refractory period is 
greater than the increase in the duration of the action 
potential [41,42]. In normal clinical doses, quinidine 
decreases the automaticity in the sinus node, the His-
Purkinje system and ectopic pacemakers. However, the 
clinical effect also depends on the anticholinergic and 
hemodynamic impact. In the fast AV nodal pathway as 
well as in accessory pathways, quinidine slows 
conduction and increases refractoriness [43]. In standard 
12-lead ECG, quinidine increases sinus rate due to the 
vagolytic effect and prolongs the duration of the QRS 
complex, as well as, the QTc interval with no or little 
prolonging effect on the PR interval [43]. 

 
Nowadays, there has been an awakening in the 

utilization of Quinidine in other clinical settings. In the 
last three decades with the increasing evidence regarding 
molecular basis of the channellopathies, there has been a 
revival of quinidine therapy due to the unique 
pharmacological multichannel properties of this Class I 
agent. Among the channellopathies, the J Wave 
Syndromes raised particular interest and research efforts, 
being the Brugada Syndrome and the Early Repolarization 
Syndrome the two manifestations of the J Wave 
Syndromes [44-48]. The J wave syndromes are associated 
with predisposition to development of polymorphic VT 
and ventricular fibrillation leading to sudden cardiac 
death in young adults without apparent structural heart 
disease [49-53]. Recent guidelines and expert consensus 
recommend quinidine therapy in particular conditions in 
several life-threatening congenital arrhythmogenic 
syndromes [54,55]. There are observations that support 
the notion that IVF has a focal origin. It was demonstrated 
that IVF represents a “focal VF” triggered by ectopic beats 
originating from Purkinje fibers [39]. These Purkinje 
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premature ventricular contractions are so premature that 
fall on the vulnerable period of the surrounding 
ventricular tissue, initiating reentrant VF. Belhassen B, et 
al. [51] investigated quinidine drug therapy during 
electrophysiological studies in a population of patients 
with IVF and inducible ventricular tachycardia or 
fibrillation. This pharmacological therapy was able to 
prevent the re-induction in 96% of patients. A reentrant 
or triggered mechanism seems to play a role in these 
patients who had a high percentage of inducible 
ventricular arrhythmias during electrophysiological 
study. Currently, therapy with quinidine can be 
considered in this kind of patients with IVF with a Class 
IIb indication [55]. The production of Quinidine was 
partially discontinued in 2006. Viskin S, et al. [56-58] 
documented in a nicely done manuscript that quinidine 
was inaccessible or available only with delay in 86% of 
130 countries surveyed in 2013. Viskin S, et al. reported 
22 patients experiencing potentially life-threatening 
arrhythmias attributable to the unavailability of 
quinidine. This very old pharmacological drug agent 
represents in the modern era of drug therapy until now 
an irreplaceable life saving antiarrhythmic medication in 
patients with channellopathies associated to ventricular 
fibrillation. 
 

Conclusion 

In conclusion, although more than three decades ago 
quinidine was still one of the most utilized antiarrhythmic 
agents, it was progressively abandoned. Currently, 
quinidine has been proved to be a live-saving 
antiarrhythmic drug able to control ventricular 
tachycardias and ventricular fibrillations in patients with 
channellopathies, specially the Brugada’s syndrome. The 
therapy of VF with electrophysiologically-guided 
quinidine may be implemented after demonstrating that 
VF is no longer inducible after quinidine therapy. Drug 
therapy with quinidine in ICD patients is usually 
beneficial by reducing the frequency of appropriate 
shocks, which can improve the patient's quality of life. 
Nowadays, quinidine is not only useful in VF-related 
channellopathies, but it is also a life saving 
pharmacological agents in these patients. Therefore, 
Quinidine should be available in every hospital, in every 
drug store, anywhere in the world. 
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