

A Mini-Review of Antinociceptive Effects of Medicinal Plants from Hamedan, Iran

Mohammadi S*

Department of Biology, Science and Research Branch, Islamic Azad University, Iran

***Corresponding authors:** Saeed Mohammadi, Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran, Tel: +988132518064; Email: smiauhphd.sm@gmail.com

Mini Review

Volume 3 Issue 1 Received Date: March 26, 2018 Published Date: April 11, 2018

Abstract

Numerous side effects of synthetic drugs have caused medicinal plants to be regarded in recent decades as a reliable source of new drugs. Regarding the analgesic effects of many plants that are pointed in raditional medicine of Hamadan province, many studies have been performed in this field that have caused need to be reviewed. In this study, medicinal plants belong to different family and also the possible mechanisms actions of these plants are presented. The data presented in this review paper provide scientific information that might be used for analgesic drugs production in future.

Keywords: Hamadan; Medicinal Plants; Antinociceptive; Animal Model

Introduction

Based on definition of international association of pain study, pain is an undesirable mental and motional experience that is associated with possible or actual damage of tissue or is created in some periods of these types of pains. Pain is created by different reasons such as harmful heat, stretch, electrical flow, necrosis, inflammation, laceration and spasm [1]. Pain is also caused by a wide variety of diseases, surgical interventions and trauma. Degenerative diseases like rheumatoid arthritis, polymyalgia rheumatica, as well as heart, asthma, cancer and inflammatory bowel diseases are also associated with inflammatory processes and pain. It is a complex experience in which cognitive, affective and behavioral features, representing psychological conditions are affected [2,3]. In most cases, pain is secondary to other complications such as diabetic nephropathy [4]. More than 50million American populations due to involving in pain conditions are

partially or totally disabled. The United States Center for Healthcare Statics carried out an eight-year study, demonstrating 32.8% U.S. populations were suffering from chronic pain [5]. Recent studies have shown that 22% of primary care patients suffered from pain which persists for more than six months and in some cases the percentage rises to 50% which is related to significant impairment of social functioning and quality of life [6]. Although pain mainly is considered as a defense mechanism which is created when a tissue is damaged and caused a person show reaction and remove pain stimulant [4], however, in sever condition it impairs social functioning and reduces quality of life [1]. Millions of people suffering from different types of damage who wish to find a drug with more effect and less side effects in order to release themselves from the pain [7].

Medicinal plants have been suggested to presence natural effective substances for prevention or treatment of pain related conditions. Drugs with herbal origin have

Advances in Pharmacology and Clinical Trials

attracted attention of researchers and people by having low or no side effects [8]. These medicinal plants mostly possess antioxidant activities [9] and other than pain and inflammation, are effective on a lot of hard curable diseases such as diabetes and cancer which may increase free radicals and result in pain [10,11].

Regarding importance of valuable indigenous information on traditional treatments, and pain relief, this

Results

study was performed with the aim of documenting information of effective medicinal plants of Hamadan Province in treating the pain.

Material and Methods

All data were obtained by major database like Web of Science, Scopus, PubMed, Google Scholar, and etc.

Family name	Scientific name	Pain test type	Fractions and used organism	Possible mechanism	Ref
Asteraceae	Artemisia absinthium	Tail flick test	Hydroalcoholic leaf extract	Opioid systems	[12]
	Calendula officinalis	Tail flick test, Writhing test	Hydroalcoholic leaf extract	Opioid systems	[13]
	Sonchus asper	Tail flick test, Writhing test, Formalin, Glutamate induced test.	Hydroalcoholic leaf extract	Glutamatergic and opioid systems	[14]
	Inula britannica	Tail flick test, Writhing test, Formalin, Glutamate induced test	Essential oil	Glutamatergic, opioid systems, L- Arginine/NO/cGMP/ KATP pathway	[15]
	Inula helenium	Tail flick test, Writhing test, Formalin	Hydroalcoholic leaf extract	Opioid systems	[16]
	Erigeron acer	Tail flick test, Writhing test, Formalin	Hydroalcoholic leaf extract	Opioid systems	[17]
Araliaceae	Hedera helix	Tail flick test, Writhing	Hydroalcoholic leaf extract	Opioid systems	[18]
Anacardiaceae	Rhus coriaria	Tail flick test, Writhing test, Formalin,	Hydroalcoholic leaf extract	Opioid systems	[19]
Apiaceae	Ducrosia anethifolia	Tail flick test, Writhing test, Formalin,	Essential oil	Opioid systems	[20]
	Eryngium pyramidale	Tail flick test, Writhing test, Formalin,	Essential oil leaf	Opioid systems	[21]
	Pimpinella anisum	Tail flick test, Writhing test, Formalin	Methanolic leaf extract	Opioid systems	[22]
Comositeae	Tanacetum balsamita	Tail flick test, Writhing test, Formalin,	Essential oil leaf	Opioid systems	[23]
Cucurbitaceae	Bryonia dioica	Tail flick test, Writhing test, Formalin,	Hydroalcoholic leaf extract	Opioid systems	[24]
Lamiaceae	Lallemantia iberica	Tail flick test, Writhing test, Formalin,	Hydroalcoholic leaf extract	Opioid systems	[25]
Liliaceae	Allium hirtifolium	Tail flick test, Writhing test, Formalin,	Hydroalcoholic leaf extract	Opioid systems	[26]
Malvaceae	Althaea officinalis	Tail flick test, Writhing test, Formalin	Essential oil leaf	Opioid systems	[27]
Oxalidaceae	Biophytum sensivitum	Tail flick test, Writhing test, Formalin	Hydroalcoholic leaf extract	Opioid systems	[28]
Rosaceae	Potentilla reptans	Tail flick test, Writhing	Hydroalcoholic leaf	Opioid systems	[29]

Advances in Pharmacology and Clinical Trials

		test, Formalin	extract		
Passifloraceae	Passiflora caerulea	Tail flick test, Writhing test, Formalin	Methanolic extract	Opioid systems	[30]
Umbelliferae	Echinophora Platyloba	Tail flick test, Writhing test, Formalin	Hydroalcoholic leaf extract	Opioid systems	[31]
Verbenaceae	Lemon Verbena	Tail-flick, and writhing	Aqueous extract	Opioid systems	[32]
Zygophyllaceae	Tribulus terrestris	Tail flick test, Writhing test, Formalin	Hydroalcoholic leaf extract	Opioid systems	[33]

Conclusion

Our results from the present study have been shown that among the mentioned medicinal plants, Asteraceae family had used more than other family for evaluation of pain.

References

- 1. McMahon SB, Koltzenburg M, Tracey I, Turk D (2013) Wall & Melzack's textbook of pain: Elsevier Health Sciences pp: 1184.
- 2. Weiner RS (2002) Pain management: a practical guide for clinicians: CRC press 95(9): 470-471.
- Wilson PR (2016) Multidisciplinary Management of Chronic Pain. A Practical Guide for Clinicians. Oxford University Press 17(7): 1376-1378.
- Rodriguez VI, Davoudian T (2016) Clinical Measurement of Pain, Opioid Addiction, and Functional Status. Treating Comorbid Opioid Use Disorder in Chronic Pain. Springer 47-56.
- 5. Argoff C (2011) Mechanisms of pain transmission and pharmacologic management. Curr Med Res Opin 27(10): 2019-2031.
- 6. Gerhart JI, Burns JW, Bruehl S, Smith DA, Post KM, et al. (2018) Variability in negative emotions among individuals with chronic low back pain: relationships with pain and function. Pain 159(2): 342-50.
- Baron R, Maier C, Attal N, Binder A, Bouhassira D, et al. (2017) Peripheral neuropathic pain. Pain 158(2): 261-272.
- 8. Sobhani Z, Reza Nami S, Ahmad Emami S, Sahebkar A, Javadi B, et al. (2017) Medicinal plants targeting cardiovascular diseases in view of Avicenna. Current pharmaceutical design 23(17): 2428-2443.
- 9. Ganji A, Salehi I, Nazari M, Taheri M, Komaki A, et al. (2017) Effects of Hypericum scabrum extract on

learning and memory and oxidant/antioxidant status in rats fed a long-term high-fat diet. Metab Brain Dis 32(4): 1255-1265.

- 10. Mohammadi S, Golshani Y (2017) Neuroprotective Effects of Rhamnazin as a Flavonoid on Chronic Stress-Induced Cognitive Impairment. Journal of Advanced Neuroscience Research 4: 30-37.
- 11. Shoeb M (2006) Anti-cancer agents from medicinal plants. Bangladesh journal of Pharmacology. 1(2): 35-41.
- Zeraati F, Esna-Ashari F, Araghchian M, Emam AH, Rad MV, et al. (2014) Evaluation of topical antinociceptive effect of Artemisia absinthium extract in mice and possible mechanisms. African Journal of Pharmacy and Pharmacology 8(19): 492-496.
- Hasanein P, Shahidi S, Komaki A, Mirazi N (2008) Effects of URB597 as an inhibitor of fatty acid amide hydrolase on modulation of nociception in a rat model of cholestasis. European journal of pharmacology 591(1-3): 132-135.
- Zarei M, Mohammadi S, Shahidi S, Fallahzadeh AR (2017) Effects of Sonchus asper and apigenin-7glucoside on nociceptive behaviors in mice. Journal of Pharmacy & Pharmacognosy Research 5(4): 217-227.
- 15. Zarei M, Mohammadi S, Komaki A (2018) Antinociceptive Activity of Inula britannica L. and Patuletin: In vivo and Possible Mechanisms Studies. J Ethnopharmacol.
- Fallahzade AR, Mohammadi S (2016) An Investigation of the Antinociceptive and Anti-inflammatory Effects of Hydroalcoholic Extract of Inula Helenium on Male Rats. Journal of Babol University of Medical Sciences 18(12): 57-63.
- 17. Golshani Y, Mohammadi S (2017) Antinociceptive and Acute Toxicity Effects of Erigeron acer L. In Adult Male Rats. Journal of Medicinal Plants 2(62): 85-93.

- 18. Mahmoudi M, Mohammadi S, Shahidi S (2013) Antinociceptive effect of hydroalcoholic leaf extract of Hedera helix in male rat 20(2): 119-125.
- 19. Mohammadi S, Zarei M, Zarei MM, Salehi I (2016) Effect of Hydroalcoholic Leaves Extract of Rhus Coriaria on Pain in Male Rats. Anesthesiology and pain medicine 6(1).
- 20. Asgari Neamatian M, Yaghmaei P, Mohammadi S (2017) Assessment of the antinociceptive, antiinflammatory and acute toxicity effects of Ducrosia anethifolia essential oil in mice. Scientific Journal of Kurdistan University of Medical Sciences 22(3): 74-84.
- 21. Fallahzadeh AR, Zarei M, Mohammadi S (2016) Preliminary Phytochemical Screening, Analgesic and Anti-inflammatory effect of Eryngium pyramidale Boiss. & Husson Essential Oil in Male Rat. Entomology and Applied Science Letters 3(5): 140-147.
- 22. Mohammadi S (2015) The Evaluation of the Analgesic Effects and Acute Toxicity of Methanol Extract of Pimpinella anisum.L in Male Wistar Rats. Journal of Babol University of Medical Sciences 17(5): 59-65.
- 23. Kazemzadeh M, Yaghmaei P, Mohammadi S (2017) Analgesic and Anti-inflammatory Effects of Tanacetum balsamita Essential Oil and One of Its Major Constituents (Quercetin) in Male Rats. Clinical Neurology and Neuroscience 1(3): 60-66.
- 24. Zarei M, Mohammadi S, Abolhassani N, Nematian MA (2015) The Antinociceptive Effects of Hydroalcoholic Extract of Bryonia dioica in Male Rats. Avicenna Journal of Neuro Psych Physiology 2(1).
- 25. Golshani Y, Mohammadi S (2015) Evaluation of antinociceptive effect of methanolic extract of

Lallemantia iberica in adult male rats. Armaghane danesh 19(12): 1058-1068.

- 26. Mohammadi S, Zarei M, Mahmoodi M, Zarei MM, Nematian MA, et al. (2015) In Vivo Antinociceptive Effects of Persian Shallot (Allium hirtifolium) in Male Rat. Avicenna Journal of Neuro Psych Physiology 2(1).
- 27. Golshani Y, Zarei M, Mohammadi S (2015) Acute/Chronic Pain Relief: Is Althaea officinalis Essential Oil Effective? Avicenna Journal of Neuro Psych Physiology 2(4).
- Mohammadi S, Yavari A (2014) Antinociceptive Effect of Hydro-alcoholic Extract of Biophytum Sensivitum Leaf on Adult Male Rat. Journal of Babol University of Medical Sciences 16(10): 31-37.
- 29. Mahmoodi M, Mohammadi S, Enayati F (2016) Evaluation of the Antinociceptive Effect of Hydroalcoholic Extract of Potentilla Reptans L. in the Adult Male Rat. SSU_Journals 24(3): 201-210.
- 30. Zarei M, Mohammadi S, Asgari Nematian M (2014) Evaluation of the antinociceptive effect of methanolic extract of Passiflora caerulea. L in adult male rat. Armaghane danesh 19(1): 56-66.
- 31. Mohammadi S (2016) The Analgesic Effect of Echinophora Platyloba Hydroalcoholic Extract in Male Rats. Journal of Babol University of Medical Sciences 18(5): 31-37.
- 32. Veisi M, Shahidi S, Komaki A, Sarihi A (2016) Analgesic Effects of the Aqueous Lemon Verbena Extract in Rats. Neurophysiology 48(2): 107-10.
- Mohammadi S, Zarei M (2013) Antinociceptive Effect of Hydroalcoholic Leaf Extract of Tribulus Terrestris L. in Male Rat. J Babol Univ Med Sci 15(6): 36-43.