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Abstract

One problem on logic programming is to express exception handling. We argue that this problem can be solved by adopting 
linear logic and prioritized-choice disjunctive goal formulas (PCD) of the form  0 * 1G G⊕  where G0, G1 are goals. These goals 
have the following intended semantics: sequentially choose the first true goal GI and execute GI where i (= 0 or 1), discarding 
the rest if any. 

Introduction

One problem on logic programming is to treat the 
extra-logical primitive in a high-level way. The progress of 
logic programming has enriched the theory of Horn clauses 
with higher-order programming, mutual exclusion [1], etc. 
Never the less exception handling could not be dealt with 
elegantly.  

In this paper, we propose a purely logical solution to this 
problem. It involves the direct employment of linear logic 
and game semantics (or computability logic [2,3] to allow for 
goals with exception handling capability. A prioritizedchoice 
disjunctive (PCD) goal – is of the form 0 * 1G G⊕  where G0, 
G1 are goals. We assume here G0 has higher priority. Executing 
this goal with respect to a program ( ), 0 * 1D ex D G G− ⊕  
– has the following intended semantics:
Sequentially choose the first successful one between

( ) ( ), 0 , , 1 .ex D G ex D G

An illustration of this aspect is provided by the following 
definition of the relation sort(X, Y) which holds if Y is a sorted 
list of X: 

( ) ( ) ( ), : , * ,Sort X Y heap sort X Y quick sort X Y− ⊕

The body of the definition above contains a PCD goal. As 
a particular example, solving the query sort ([3, 100, 40, 2], 
Y) would result in selecting and executing the first goal heap 
sort ([3, 100, 40, 2], Y). If the heap sort module is available 
in the program, then the given goal will succeed, producing 
solutions for Y. If the execution fails, the machine tries the 
plan B, i.e., the quicksort module. 

The operator ⊕∗ is, in fact, indispensable to logic 
programming, as it is a logic-programming equivalent of the 
if-then-else in imperative languages. To see this, consider the 
following example:

( ) ( ) ( ), , : *Max X Y Z X Y Z X Z Y− ≥ ∧ = ⊕ = .

Of course, we can specify PCD goals using cut in Prolog, 
but it is well-known that cuts complicates the declarative 
meaning of the program [4].

As seen from the example above, PCD goals of the form 
*A B⊕ can be used to specify a task A, together with the 

failure-handling routine B.

The exact meaning of *A B⊕ can be explained by translating 
it to 

( )A A B⊕ ¬ ∧
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Here, dealing with ¬A, we rely on closed world 
assumption.

This paper proposes Prolog⊕∗, an extension of Prolog 
with PCD operators in goal formulas. The remainder of this 
paper is structured as follows. We describe Prolog⊕∗ in 
the next section. In Section 3, we present some examples of 
Prolog⊕∗.

The Language

The language is a version of Horn clauses with PCD goals. 
It is described by G- and D-formulas given by the syntax rules 
below:

: *G A G G xG G G= ∧ ∃ ⊕

:D A G A x D D D= ⊃ ∀ ∧

In the rules above, A represents an atomic formula. A 
D-formula is called a Horn clause with PCD goals.

We will present a proof procedure for this language as 
a set of rules. These rules in fact depend on the top-level 
constructor in the expression, a property known as uniform 
provability [5-8]. Note that proof search alternates between 
two phases: the goal-reduction phase and the back chaining 
phase. In the goal-reduction phase (denoted by pv(D, G)), the 
machine tries to solve a goal G from a clause D by simplifying 
G. The rule (6)-(8) are related to this phase. If G becomes an 
atom, the machine switches to the back chaining mode. This 
is encoded in the rule (5). In the back chaining mode (denoted 
by bc(D1, D, A)), the machine tries to solve an atomic goal A 
by first reducing a Horn clause D1 to simpler forms (via rule 
(3) and (4)) and then back chaining on the resulting clause 
(via rule (1) and (2)).

Definition 

Let G be a goal and let D be a program. Then the notion of 
proving ( ), ,hD Gi pv D G−  – is defined as follows:

• ( ), , % .bc A D A this is a success
• ( ) ) ( )0 , , , 0bc G A D A if pv D G⊃ .
• ( ) ( ) ( )1 2, , 1,D,A 2, , .bc D D D A if bc D or bc D D A∧
• ( ) [ ]( )1, , D1,D, .bc x D D A if bc t x A∀
• ( ) ( )pv , if bc , , .D A D D A
• ( ) ( ) ( )pv ,G 0 G1 if ,G 0, and pv , 1 .D PV D D G∧
• ( ) [ ]( )pv , G 0 if , 0 .D x PV D t x G∃
• ( )pv , 0 * 1D G G⊕  If select the first successful 

disjunction between ( ), 0pv D G  and ( ), 1pv D G . % 
this goal behaves as a goal with exception handling.

 

In the above rules, only the rule (8) is a novel feature. To 
be specific, this goal first attempts to prove G0. If it succeeds, 
then do nothing (and do not leave any choice point for G1). If 
it fails, then G1 is attempted. 

Unlike Prolog, execution consists of two phases in our 
setting: proof phase and execution phase. The proof phase 
discussed above provides a winning strategy, say S, for the 
machine, which is a hard part. The execution phase is a 
relatively easy one. In the execution phase, the machine just 
follows the winning strategy is to complete the computation. 
Such a strategy has been studied before [5] and can be 
directly used here after preprocessing every occurrence of.

( )*A Bto A A B⊕ ⊕ ¬ ∧ .

Examples 

As an example, let us consider the following database 
which contains the today’s flight information for major 
airlines such as Panam and Delta airlines.
% panam (source, destination, dp time, are time)
% delta (source, destination, dp time, are time) panam (Paris, 
nice, 9: 40, 10: 50) 
Panam(nice,london,9:45,10:10)  
delta (Paris, nice, 8 : 40, 09 : 35) 
Delta (Paris, London, 9: 24, 09: 50)

Consider a goal

( ) ( ), , , * , ,dt,atdt at panam paris london dt at dt at delta paris london∃ ∃ ⊕ ∃ ∃

This goal expresses the task of finding whether the user 
has a flight in Panam to fly from Paris to London today. Since 
there is no Panam flight, the system now tries Delta. Since 
Delta has a flight, the system produces the departure and 
arrival time of the flight of the Delta airline.
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