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Abstract

Researchers are increasingly investigating marketing assertions related to natural products and supplements. In the modern 
era, the study of bioavailability has gained prominence as a burgeoning scientific discipline. This comprehensive review 
explores the bioavailability of natural products in pharmaceutical applications, shedding light on their intrinsic challenges and 
innovative strategies for improvement. The assessment encompasses the limitations including poor aqueous solubility, low 
permeability, and instability, which collectively impede the effective absorption of natural products in the human body hinder 
the effective utilization of these compounds, and underscores the critical need for enhanced bioavailability to unlock their full 
therapeutic potential. Such challenges have spurred research into innovative approaches to overcome these limitations and 
optimize bioavailability. In response to these challenges, this review highlights cutting-edge strategies, including nanoparticle 
formulations, lipid-based delivery systems, and prodrug design, as effective means to enhance bioavailability. These approaches 
aim to improve solubility, stability, and overall absorption, thereby maximizing the therapeutic efficacy of natural products 
in pharmaceutical formulations. Moreover, the review emphasizes the importance of understanding the interplay between 
formulation techniques and the physicochemical properties of natural products. By integrating these innovative approaches, 
researchers can tailor solutions to specific compounds, providing a roadmap for overcoming bioavailability limitations and 
advancing the integration of natural products into mainstream pharmaceutical practice.
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Introduction 

The use of herbal remedies for treating various ailments 
could be traced back to prehistorical civilizations. In the 

last few decades, significant global calls for returning back 
to nature have emerged with a tremendous demand for 
using herbal medicines as crude extracts or phytochemicals 
reflecting the increasing belief that natural medicines are 
more safe than synthetic drugs and the usefulness of natural 
products as multipurpose healing agents as an holistic 
approach for treatment strategy; this increasing belief 
was clearly demonstrated through COVID-19 pandemic as 
evidenced by the significant growth of the market share 
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of herbal medicines to reach about 166 billion USD and 
forecasted to reach 348 billion USD by 2028 [1]. In the 
20th century, natural products (NPs) derived from natural 
sources (microbes, plants, and animals) have contributed 
to increasing human longevity, reducing pain and suffering, 
and transforming the field of medicine [2], NPs have served 
as precursors for various drugs, such as the potent analgesic 
morphine, the potent antimalarial drug Artemisinin, isolated 
from Artemisia annua [3]. Additionally, Paclitaxel, isolated 
from Taxus brevifolia, as an antimitotic has proven effective 
against ovarian and breast cancers [4]. Calanolide A, derived 
from Calophyllum lanigerum, is an additional example of 
natural products inhibiting AZT-resistant strains of HIV [5].

Renowned for its widespread utilization of natural 
substances, Traditional Chinese Medicine (TCM) is well-
known for incorporating natural products. The earliest 
Chinese medicinal book, Prescriptions for Fifty-Two Diseases 
(Wu Shi Er Bing Fang), dating back to around 350 BC [6,7]. 
Moreover, Marine ecosystems had gained much interest in 
the last few decades as a recent potential source of natural 
products with nine of the at least 13 compounds undergoing 
advanced clinical trials have been given approval to be used 
as medications [8-10].

However, multiple challenges are emerging related to 
the rationale beyond the extensive use of herbal medicines, 
where evidence-based medicine can rationalize the clinical 
effectiveness of herbal drugs, still, there are interesting 
questions regarding the bioavailability and pharmacokinetics 
of herbal medicines including the study of the relevant 
parameters as absorption, distribution, metabolism, and 
elimination of herbal medicines, answers of these questions 
can fill the gap between the pharmacodynamic assays and the 
clinical effects of herbal products [11]. Hence, overcoming 
these challenges necessitates implementing inventive drug 
delivery systems, serving as a crucial solution to enhance the 
bioavailability and pharmacokinetics of phytomolecules.

The major obstacle was the complex nature of herbal 
extracts and the presence of multiple active ingredients 
with the difficulty to determine which can relate directly 
to the clinical effect [12]. The additional challenge related 
to the extensive metabolism of the natural products which 
may result in a metabolic derivative that can relate directly 
to the clinical effect, In other words, the body’s metabolism 
can transform natural products into different substances, 
and some of these metabolites may contribute directly to 
the therapeutic or clinical effects of the original natural 
product [13]. Moreover, the need of extremely sensitive 
and selective analytical tools is required for the assessment 
of the µg/L or pg/L plasma concentrations of the active 
ingredients. However, recent advances in bioassay and 
analytical techniques are providing continuous solutions to 

the emerging challenges [14].

Bioavailability remains one of the major determinants for 
the clinical effect of the herbal medicines; lack of significant 
bioavailability can provide the rationale for the lack of in 
vivo effect of many herbal extracts/products in contrast to 
their significant potency when tested in vitro GIT absorption 
of oral herbal drugs represents the major determent for its 
bioavailability, herbal products with poor solubility profile 
will demonstrate poor absorption and hence bioavailability 
profile with direct reflection on the clinical effectiveness of 
the herbal product [12]. Other factors that can negatively 
affect the bioavailability of herbal products include the 
affinity to efflux pumps such as P-glycoprotien (P-gp) 
returning back significant portion of the absorbed drug to 
the GIT, also metabolizing enzymes such as CYP450 play a 
significant role in decreasing the plasma concentration of the 
target product [15-19].

Currently, there is significant interest and a medical 
necessity to enhance the bioavailability of numerous drugs 
that face challenges such as poor absorption, extended 
administration periods, toxicity, and high costs [20,21]. 
Insufficient bioavailability often results in sub-therapeutic 
effects unless large doses are administered, leading to 
potentially serious side effects. Improving bioavailability 
is crucial for reducing dosage or frequency, and addressing 
issues like poor dissolution, low aqueous solubility, 
membrane permeation, lower lipophilicity, degradation 
in gastrointestinal fluids, and pre-systemic metabolism 
[20,22,23]. 

Various strategies, including the use of bioenhancers, 
aim to overcome these challenges by increasing penetration 
through membranes and addressing issues of poor 
absorption and bioavailability associated with molecules 
with inadequate lipid solubility or improper molecular size 
[24].

Different research strategies have been directed to 
improve the bioavailability of herbal medicines through 
the modification of the absorption profile and using of 
bioavailability enhancers via inhibition of efflux pumps or 
modulation of the enzymatic activities of the metabolizing 
enzymes. Interestingly, many of these strategies underlie the 
use of other herbal products as bioavailability enhancers. 
Several innovative formulations have been developed to 
improve bioavailability of herbal products and improving 
the solubility of herbal medicines implies the development 
of innovative formulations that can modulate the poor 
solubility profile of the herbal medicine including for 
example: preparation of nanoparticles with higher surface 
area as in the case of Naringin loaded nanoparticles to 
enhance the physicochemical properties of naringin and its 
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neuroprotective and antioxidant effects as well as anticancer 
activity [25-27]. Radix salvia miltiorrhiza nanoparticles 
to improve its bioavailability, as R. salvia miltiorrhiza 
famously used in traditional Chinese medicine (TCM) for 
blood-nourishing, mind-calming, blood-cooling, carbuncle-
relieving, and coronary heart disease treatment (especially 
myocardial infarction and angina pectoris), considering The 
larger particles in the original TCM makes it difficult to ingest, 
which also reduces its bioavailability [28-31]. Moreover, The 
sesquiterpene artemisinin has a distinct peroxide bridge 
that contributes significantly to its active biological mode 
of action and its derivatives including dihydroartemisinin, 
artemether, and artesunate are recommended for clinical 
use, however artemisinin suffers from limitation its 
poor bioavailability, Furthermore, artemisinin and its 
derivatives pharmacological properties can be boosted by 
encapsulating them into designed nanocarriers and enhance 
their delivery [32-35] such as nanoparticles, nanomicelles 
[36,37], nanocapsules dendrimers, nanomicelles, polymer-
drug conjugates, nanogels, hydrogels nanocapsules , and 
nanoliposomes [38-40].

In most countries there is no universal regulatory 
system insuring the safety and efficacy of herbal medicines. 
Evidence-based scientific verification of effectiveness of 
nutraceutical based natural products is still lacking. The 
discovery of huge number of bioactive compounds and 
extracts based on pharmacological studies and advanced 
analytical techniques encourage the interest to shed the light 
of the importance of bioavailability assessment of natural 
products as a future candidates as potential medicines. 

Factors and Challenges Influencing 
Bioavailability 

Solubility and Permeability 

Despite high permeability of lipophilic drugs and ease of 
incorporation into epithelial cell membranes, many of them 
have low water solubility. Chemical modification (prodrugs) 
or lipid-based delivery systems are two methods that can be 
used to improve the solubility in gastrointestinal fluids and 
hence boost the bioavailability of this type of drugs that have 
low water solubility and high permeability [41,42]. However, 
some compounds have low permeability through epithelial 
cell membranes and low solubility in gastrointestinal fluids. 
Because of their weak permeability and solubility properties, 
this kind of compounds usually has a poor oral bioavailability. 
A drug’s oral bioavailability is mostly determined by its 
solubility and/or permeability characteristics, which are 
dependent on its molecular and physicochemical qualities 
[42,43]. On the other hands, some compounds that exhibit 
low permeability through epithelial cell membranes yet high 
solubility in digestive fluids. such as many highly hydrophilic 

drugs, which are easily carried across epithelial cell 
membranes despite being readily soluble in water solutions. 
Chemical modification (prodrugs) or coadministration with 
chemicals that improve permeability of cell membranes 
can boost the bioavailability of these compounds [44,45]. 
However, there are additional substances that are innately 
highly permeable across the membranes of epithelial cells 
and highly soluble in gastrointestinal fluids. Therefore, the 
solubility or permeability of these kind of substances does 
not limit their oral bioavailability; instead, other factors 
including liberation, interactions, chemical transformations, 
metabolism, or efflux inside the GIT may limit it [43].

Food Matrix Effects 

The physical disposition of the food matrix is a major 
factor in defining the food’s overall qualities, such as its flavor, 
texture, nutritional value, and nutrient bioavailability. It is 
related to how molecules, particles, and phases are arranged 
spatially within the meal, which affects things like solubility, 
stability, and how various components interact. Compared 
to processed foods and supplements, less phytochemicals 
are effectively absorbed from fresh fruits and vegetables. 
Therefore, only 25% of the veggies ingested contain sufficient 
amounts of phytochemicals to produce desired effects; this 
percentage rises to 50% when fruits are included [46].

Food matrix is one of the main factors limiting the 
availability of xanthophylls [47.48]. When flavonoids are co-
consumed with the food matrix, they need to be liberated from 
the matrix and transformed into a form that can be absorbed 
(bioaccessibility) before they can enter the small intestine and 
ultimately reach the bloodstream (bioavailability) to perform 
their biological function. However, a great deal of research 
has focused on the more intricate yet shared interactions 
found in the diet, revealing the biological roles of individual 
flavonoid compounds in various experimental paradigms. 
Furthermore, it is well known that the gut microbiota is 
essential for the metabolism of dietary substrates and 
flavonoids, which in turn affects how the two interact [49]. 
Anthocyanin absorption from blackcurrant juice was found 
to be higher than that from an aqueous citric acid solution 
containing pure anthocyanins, according to a rabbit study, 
on the other hand, oral administration of oatmeal to rats in 
citric acid water decreased the absorption of anthocyanins 
from blackcurrant, most likely because the overall amount 
of anthocyanins absorbed from the gut was lowered . The 
two investigations imply that the intestinal absorption of 
blackcurrant anthocyanins may be hampered by citric acid or 
certain elements of oatmeal, such as fiber [50,51]. The total 
amount of pelargonidin-3-O-glucoside and its associated 
metabolites recovered in the urine of pigs was eight times 
higher than that of cyanidin-3-O-glucoside. This finding could 
help to explain why anthocyanins from strawberries are more 
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bioavailable than those from blackberries [52,53]. Humans 
absorbed pelar gonadoside-3-O-glucoside from strawberries 
more easily than other anthocyanin forms, as demonstrated 
by urine containing smaller amounts of other metabolites 
and primarily higher concentrations of pelargonidin-3-O-
glucuronide, the corresponding metabolite [54,55].

Methods for Assessing Bioavailability 

Assessing bioavailability is essential to understand how 
effectively a substance can be absorbed and utilized by living 
organisms, especially in the context of pharmaceuticals, 
nutrients, and environmental contaminants. Bioanalytical 
techniques performance liquid chromatography (HPLC), 
mass spectrometry (MS), and immunoassays incorporated 
to various methods to determine bioavailability, and those 
methods can be broadly categorized into in vitro, ex vivo, and 
in vivo models.

 In vitro models involve simulated gastrointestinal 
digestion, artificial membranes, and Caco-2 cell cultures, 
providing insights into the initial stages of absorption and 
interaction with biological barriers. Ex vivo models, including 
isolated/reconstituted cell membranes and Ussing chambers, 
bridge the gap between in vitro and in vivo assessments, 
offering a more realistic representation of physiological 
conditions. In situ models, such as gastrointestinal organs 
in laboratory conditions and intestinal perfusion in animals, 
enable researchers to examine bioavailability within a 
controlled environment. In vivo models, involving animal 
studies and human trials, remain pivotal for comprehensively 
evaluating the behavior and effectiveness of natural products 
in complex biological systems, providing valuable data for 
translational approaches [56]. However, in vivo studies only 
yield precise values [57]. 

For instance, the evaluation of polyphenolic bioavailability 
has been conducted via in situ studies. In order to ascertain 
flavonoid metabolism, Wang and colleagues studied total 
extracts of flavonoid while incorporating liver perfusion [58]. 
Fong and colleagues also utilized this method and employed 
rats’ intestines to investigate the metabolism and absorption 
of flavones derived from plants [59]. In this method, they 
discovered that acetaminophen, (-)-epicatechin, piperine, 
and primarily curcumin could markedly inhibit the intestinal 
metabolism of the flavone baicalein and boost its absorption 
[56].

The evaluation of vitamin E bioavailability has 
also been done using in vivo investigations. Nagy, et al. 
conducted a human study with healthy individuals under 
maldigestion conditions [60], as well as a long-term human 
study was performed by Novotny and others [61], and it 
was discovered that the acetylated form of α-tocopherol 

displayed the same bioavailability as free α-tocopherol and 
found that consuming diary 9.2 mmol (4 mg) of α-tocopherol 
kept plasma concentrations of α-tocopherol at 23 mmol/L, 
indicating that the recommended dietary intake for vitamin E 
might be lower than currently advised. Additionally, Johnson, 
et al. identified new urinary metabolites using in vivo assays 
in both mouse and human. These novel metabolites include 
α-carboxyethyl hydroxychroman (α-CEHC) glycine, α-CEHC 
glycine glucuronide, as well as α-CEHC taurine [62].

Additionally, Caco-2 uptake method simulated static 
gastrointestinal digestion, dynamic gastrointestinal digestion, 
transport assays, and in vivo studies involving both animals 
and humans have been employed to screen glucosinolate 
bioaccessibility and bioavailability. Nevertheless, it is crucial 
to consider colonic fermentation as it plays a vital role in the 
absorption of isothiocyanates [56] .

Lai, et al. also conducted an ex vivo investigation 
employing rat cecal microbiota and an in situ rat cecum assay, 
as well as an in vitro simulation of glucoraphanin digestion 
in the upper gastrointestinal tract. The in vitro investigation 
verified that glucoraphanin did not undergo degradation 
by upper GI digestive enzymes, and as a result, it was able 
to enter the rat cecum undamaged. Concurrently, in both 
in situ and ex vivo protocols, the F344 rat cecal microbiota 
degraded glucoraphanin to sulforaphane, which was then 
able to pass through the cecal enterocyte and be absorbed 
systemically [63].

Bioavailability of Specific Natural Products 

The chemical properties of NPs determine their 
biological effects [64]. The chemical structure of NPs 
influences their rate and to what extent they are absorbed 
in the intestines as well as the nature of the metabolites 
circulating in the bloodstream [64]. Human bioavailability 
studies reveal varying amounts of intact phytochemicals in 
urine, indicating differences among compounds. For instance, 
quercetin and rutin exhibit low bioavailability (0.3e1.4%), 
whereas catechin in green tea, genistein and daidzein in 
soy, and anthocyanidins in red wine show relatively higher 
bioavailability (3e26%). Notably, a significant portion of 
ingested polyphenols (75e99%) is not excreted in urine. 
In other words, they have either not crossed the intestinal 
barrier, or they may have crossed it but were eliminated 
in the bile or were broken down by our own tissues or the 
microorganisms in our colon [65].

Alkaloids 

The effectiveness of alkaloids is limited by how efficiently 
they are absorbed and carried to the intended tissues as fully 
active metabolites. Hence, their bioavailability becomes a 
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significant consideration when employed as therapeutic 
agents for severe diseases. Alkaloids often undergo 
absorption and biotransformation when taken orally, leading 
to reduced bioavailability in crucial target tissues like the 
liver, kidney, brain, lung, heart, and spleen [66,67].

The pharmacokinetics of alkaloids in lotus have been 
extensively studied in various animal models such as mice, 
rats, mice, rabbits, dogs, and humans. Research indicates 
that nuciferine is swiftly taken up into the bloodstream, 
achieving an average peak concentration (Cmax) of 1.71 μg/
mL approximately 0.9 hours after oral intake (at a dose of 50 
mg/kg) [68]. 

Wei, et al. reported that the bioavailability of liensinine 
in vivo is relatively poor, as evidenced by the significantly 
reduced AUC0-∞ (81.92 vs. 1369.09 ng h/mL) and Cmax 
values (6.70 vs. 668.4 ng/mL) observed after liensinine 
intragastric injection are significantly lower than those seen 
with intravenous administration, additionally, Tong, et al.’s 
research in the same year confirmed the lower bioavailability 
of liensinine [69,70]. 

Furthermore, when rats were treated with lotus 
leaf extract, specific pharmacokinetic observations were 
made regarding certain compounds (namely nunciferine, 
O-nornuciferin, liriodenine, armepavine, and pronuciferine). 
In particular, the absorption and elimination of armepavine 
occurred rapidly. Additionally, nunciferine and pronuciferine 
exhibited elevated plasma levels, with respective AUC0–24h 
values of 2069 and 2031 ng/ml, following oral administration 
[68]. Nevertheless, the time-to-maximum (Tmax=3.50 h) and 
terminal half-life (T1/2=6.18 h) of nunciferine in the Zou, 
et al. study exceeded the values reported (0.9 and 1.65 h, 
respectively) in the Ye, et al. study, according to comparison 
analysis. This discrepancy might be attributed to the potential 
synergistic effects of mixed components, leading to enhanced 
pharmacokinetics [68]. The pharmacokinetic parameters of 
assessment of liensinine, isoliensinine, and neferine were 
assessed using ultra-HPLC-MS/MS following intravenous 
(IV.) administration (5.0 mg/kg) that revealed AUC0→∞ values 
in rat plasma of 1164.09, 1695.52, and 3540.90 ng/mL•h, 
respectively, suggesting significant plasma levels, contrary 
to findings in Hu, et al. study, liensinine exhibited T1/2 and 
AUC0→∞ values of 8.2 hours and 1802.9 ng/ml•h, respectively, 
in rat plasma following intravenous administration at 5.0 
mg/kg [68]. 

Another pharmacokinetic study on O-demethyl 
nuciferine revealed a 6.4% bioavailability after gavage and 
being injected sublingually. Generally, alkaloids in lotus, such 
as neferine, higenamine, nunciferine, and N-nunciferine, 
exhibit limited in vivo bioavailability due to their poor 
solubility. This limitation hinders their potential for further 

clinical application [68]. 

Glucosinolates

Glucosinolates represent a diverse category of plant 
secondary metabolites that exert nutritional benefits and 
contain biologically active compounds. These compounds 
are predominantly present in cruciferous plants, particularly 
within the Brassicaceae family. Commonly consumed 
edible plants like cabbage, cauliflower, broccoli, rapeseed, 
horseradish, and mustard are rich sources of glucosinolates 
[71]. Epidemiological research supports the health benefits 
of consuming cruciferous foods in lowering the risk of 
obesity-related metabolic disorders, degenerative diseases 
[72], and cancer [73]. Myrosinase enzyme will hydrolyze 
glucosinolates in cruciferous plants to produce a variety of 
metabolites, including isothiocyanates, nitriles, oxazolidine-
2-thiones, and indole-3-carbinols, if the plants are consumed 
unprocessed. However, myrosinase enzyme is inactivated 
and glucosinolates may be partially absorbed in their intact 
state through the gastrointestinal mucosa when cruciferous 
plants undergo cooking before consuming [71] Deactivating 
the plant myrosinase, for instance, through cooking, coupled 
with administering antibiotics leads to a reduction in 
bioavailability and this is evident in the observation that 
bioavailability is higher when consuming preparations 
containing myrosinase compared to those lacking it [74]. 

New findings indicate that specific Lactobacillus species, 
specifically L. mesenteroides and L. plantarum, have the ability 
to break down glucosinolates in vitro [75]. Consequently, 
human studies have shown significant variability in the 
degradation of glucosinolates to isothiocyanates due to 
variations in colonic microflora among individuals. It’s 
noteworthy that the excretion of urinary isothiocyanate 
metabolite (dithiocarbamate) diminishes substantially, from 
47% to a negligible level, when bowel microflora is reduced 
through mechanical and antibiotic means [76].

Polyphenols

The past several decades have seen a rise in interest 
in the research of the absorption, transportation, 
bioavailability, and bioactivity of polyphenols and associated 
metabolites following food consumption [77]. Drawing 
upon numerous studies involving cell cultures, animals, and 
humans, it is widely recognized that the predominant hurdle 
in harnessing polyphenolics for their potential as chemo-
preventive or anti-diabetic agents lies in their notably low 
oral bioavailability [77]. This limitation is presumed to be 
a primary factor contributing to the indistinct therapeutic 
effects and significant inter-individual variations observed 
in clinical trials [77]. Following the intake of polyphenolics, 
some undergoes initial absorption in the stomach. However, 
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the entry of certain compounds like catechins, flavanols, and 
flavones into the bloodstream predominantly takes place in 
the small intestine, rather than in the stomach [77]. 

In most cases, the cleavage and release of the aglycone 
are associated with the absorption of phenolics and their 
corresponding glycosides, partially due to the activity of 
digestive enzymes and microbial metabolism [77]. The 
small intestine’s epithelial cells contain lactase phloridzin 
hydrolase (LPH), which has a specific substrate preference 
for flavonoid-O-β-glycosides [78]. The released aglycone 
can then passively diffuse into the epithelial cells due to its 
increased lipophilicity and close proximity to the cellular 
membrane [79]. Conversely, cytosolic β-glucosidase (CBG), 
an additional digesting enzyme found in epithelial cells, 
can also hydrolyze some phenolic glycosides following their 
passage through the epithelium [80]. 

The development of the bioavailability data for 
flavanones in humans used the administration of 250 mL of 
orange juice that contained 168 μmol of hesperidin and 12 
μmol of naringenin-glycoside. The dose of hesperidin was 
comparable to that of tomato juice containing rutin taken 
by healthy people. Actis-Goretta, et al. thoroughly examined 
the intestinal absorption and metabolism of hesperetin-
7-O-rutinoside, which lowers blood pressure in healthy 
individuals.

Both compounds, hesperetin-7-O-glucoside as well as 
Hesperetin-7-O-rutinoside directly push through the human 
body’s proximal jejunum , and brush border enzymes rapidly 
hydrolyze the glycoside , but no hesperetin metabolites 
were found in blood and just a tiny amount was eliminated 
in urine. Individuals that consumed orange juice containing 
hesperetin-7-O-glycoside experienced a 4-fold higher Cmax 
and a much earlier Tmax for the emergence of hesperetin 
metabolites than the subjects consuming conventional orange 
juice [81]. Likewise, increased overall absorption, higher 
peak concentration (Cmax), and earlier time to reach peak 
concentration (Tmax) were observed when consuming orange 
juice treated with α-rhamnosidase, containing naringenin-
7-O glucoside, compared to the initially presented narirutin 
[82]. It was found that the bioavailability of anthocyanins 
was generally lower than that of other flavonoids, based 
on a number of animal and human studies that used 
anthocyanin-rich food and measured the anthocyanins’ 
plasma concentrations and urinary excretion [83,84]. It 
was discovered that less than 0.1% of human individuals’ 
urine had intact anthocyanins [85]. When intravenous doses 
were utilized for comparisons, it was discovered that the 
anthocyanins’ absolute bioavailability in animal experiments 
ranged from 0.26% to 1.8% [86,87]. Anthocyanin absorption 
is deemed to be inefficient, however some of their glycosides 
may be effectively absorbed through the gastrointestinal 

mucosa. As an instance, 30 and 56% of cyanidin 
3-glucoside and pelargonidin 3-glucoside were examined as 
protocatechuic acid and 4-hydroxybenzoic acid, respectively, 
in plasma that follows oral intake in humans [88].  
Unlike the substantial concentrations of phenolic acid 
metabolites, it appears that there are minimal levels of 
anthocyanins present in the plasma [77]. 

Following the consumption of flavonol-containing 
tomato juice, the absorption of metabolites began at 4 
hours, indicating absorption in the large instead of the small 
intestine [89]. The plasma of healthy subjects showed the 
presence of sorhamnetin-3-glucuronide (Cmax=4.3 nM) 
and quercetin-3-glucuronide (Cmax = 12 nM) [89]. This 
outcome was consistent with a research by Day, et al. that 
found that LPH did not cleave the flavonol disaccharide in 
the small intestine’s epithelial cells [90]. In vivo, Quercetin-
rutinoside typically crosses the small intestine and reaches 
the colon, where colonic enzymes cleave the sugar moiety. 
The liberated aglycone then experiences mild methylation 
and glucuronidation before being absorbed into the portal 
vein [80,91]. On the other hand, consumption of quercetin, 
for instance, readily undergoes its ring fission, generating 
catabolites such as 3-hydroxyhippuric acid, dihydroferulic 
acid, 3-hydroxyl-phenylacetic acid, and 3-methoxy-4-
hydroxy-phenylhydracrylic acid [92]. It’s interesting to 
note that quercetin produced in the colon from quercetin-
rutinoside is metabolized into glucuronide and methylation 
derivatives; however, it is not to sulfate metabolites [93]. 
In contrast, the quercetin released in the small intestine, 
through the cleavage of its glycoside, has the potential to 
be transformed into quercetin-glucuronide, sulfate, as well 
as methylated forms [94], indicating that the sulfation of 
flavonols is a metabolic process primarily carried out by 
enzymes within the lining of the small intestine, contrasting 
with its occurrence in neither the colon nor the liver [77].

Moreover, in Asian diets, soy products constitute the main 
source of isoflavones, which are typically represented as the 
two major forms of genistein and daidzein [77]. Glycoside 
hydrolysis results in the constant presence of isoflavones 
in their aglycone forms in fermented soybean [95]. on the 
other hand, throughout processing of products, such as 
the production of soy milk and tofu, isoflavones content 
may decreased as they mostly converted into isoflavone 
glucosides, which results in the degradation of malonyl-
ordacetyl-glucosides [96]. More precisely, isoflavones are 
specially categorized as β-estrogen receptors due to their 
structural resemblance to human female hormone; as a 
result, they can function as estrogen agonists and antagonists 
which compete at the receptor complex with estradiol [97]. 
The 2-hydroxyisoflavanone synthase enzyme initiates the 
isoflavone biosynthesis pathway in legume plants. Through 
the hydroxylation of position C-2 and the transfer of the 
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aromatic B-ring from C-2 to C-3, this enzyme is capable of 
converting flavanone to 2-hydroxyisoflavanone. Furthermore, 
isoflavone can be converted to isoflavanone by microbial 
metabolism [77]. The synthesis of 2-(4’-hydroxyphenyl) 
propionic acid from 6’-hydroxy-O-desmethylangolensin was 
indicated by in vitro results through incubations with human 
fecal and rat cecal microbiota, confirming C-ring fission [77]. 
Genistein undergoes a reduction to form dihydrogenistein, 
and this compound can be further metabolized into 
6’-hydroxy-O-desmethylangolensin [77]. 

In traditional medicine, Silymarin, that is derived from 
the milk thistle plant, is used to treat a variety of liver 
and biliary tract ailments [98]. This standardized extract 
composed up seven flavonolignans and flavonoids, with 
silybin A and B identified as the main and most potent 
constituents. When orally administered, silymarin (silybin) 
is quickly absorbed, resulting in Tmax within 2–4 hours and 
having a half-life (t1/2) of 6 hours. However, only 20%–50% 
of orally ingested silymarin is absorbed in the gastrointestinal 
tract, as it experiences significant enterohepatic circulation 
[98]. Consequently, the absorption of silymarin in the 
gastrointestinal tract is limited, leading to poor bioavailability 
[98] The absorption of silymarin or silybin following oral 
administration was studied in vivo, and the results showed 
a very high degree of variability in the Cmax and Tmax values 
[98]. The observed outcome could perhaps be attributed to 
variations in the isomer (silybin A and B) concentrations 
between the extract and dose delivered [98]. According to 
Wu, et al. investigation, there was minimal absorption of 
silymarin isomers following oral administration of the plain 
extract, as evidenced by the oral bioavailability of silymarin 
(silybin) in rat plasma, which was 0.73% [98].

Innovative Approaches to Improve the 
Bioavailability of Orally Delivered Natural 
Products

Improving bioavailability of NPs could be via traditional 
strategies and novel ones. Novel herbal formulations, 
including liposomes, transfersomes, ethosomes, niosomes, 
phytosomes, dendrimers, micro/nanoparticles, micro/
nanoemulsions, and micelles, have effectively improved the 
delivery of phytopharmaceuticals. These new formulations 
offer significant advantages over conventional ones, such as 
enhanced solubility and stability, increased bioavailability 
and membrane permeability, enhanced pharmacological 
activity with sustained-release profiles, and decreased 
toxicity [65]. Lipid-based formulations, such as liposomes, 
micelles, and lipid nanoparticles, are incorporated to improve 
drug solubility and absorption. Absorption enhancers, 
substances that temporarily increase the permeability of the 
intestinal mucosa, are introduced to facilitate drug absorption 

[99,100]. Additionally, optimizing drug absorption by co-
administering it with food, particularly for drugs with food-
dependent pharmacokinetics, is another viable strategy 
[101,102]. Enzyme modulation, achieved through enzyme 
inhibition or induction, influences the activity of enzymes 
involved in drug metabolism [103,104]. Employing sustained 
or controlled-release systems helps maintain therapeutic 
drug levels, minimizing fluctuations and improving overall 
bioavailability [105,106]. Conjugating drugs with carrier 
molecules is explored to enhance pharmacokinetic properties 
and oral absorption. Furthermore, the incorporation of 
excipients in formulations is implemented to enhance 
drug stability, solubility, and absorption. These diverse 
approaches collectively aim to address challenges associated 
with drug solubility, degradation, and absorption, ultimately 
optimizing bioavailability for more effective therapeutic 
outcomes.

Formulation Strategies: Nanotechnology and 
Liposomal Delivery 

Several strategies are employed to boost the 
bioavailability of orally administered drugs. One such 
approach involves nanoformulations, where nanotechnology 
is utilized to create drug formulations at the nanoscale, 
thereby improving solubility and absorption in the 
gastrointestinal tract [107], neurodegenerative disorders 
(NDs) such as multiple Sclerosis, Alzheimer’s, Parkinson’s, 
Huntington’s, and diseases in addition to its effect on the food 
industry, such as improving high-quality, healthier and safer 
nutritional quality of food [108]. Many drug formulations 
could be greatly improved in terms of efficacy, stability, and 
pharmacokinetics by utilizing a variety of nanostructures, 
such as polymer nanoparticles, lipid nanoparticles, 
nanoliposomes, nano-micelles, and carbon nanotubes 
(CNTs), in addition to various vehicle systems like lactoferrin, 
polylactic-co-glycolic acid, and polybutylcyanoacrylate [108]. 

For instance, in 2013, a formulation using nanodroplets 
of pomegranate seed oil demonstrated positive effects on 
Creutzfeldt-Jakob disease (CJD). The study revealed that 
there were no significant changes in the accumulation of the 
scrapie isoform of the prion protein (PrPSc). However, there 
was a relative decrease in neuronal loss and lipid oxidation, 
suggesting a neuroprotective function of pomegranate seed 
oil. Additionally, in a mouse model of multiple sclerosis 
(MS), the nanodroplet formulation of pomegranate seed 
oil exhibited a greater reduction in the disease burden 
compared to free pomegranate seed oil [109,110]. In rats 
subjected to a high-fat cholesterol diet, the administration of 
a nanoemulsion containing a rich fraction of thymoquinone 
(TQRF) and thymoquinone (TQ) not only ameliorated 
memory deficits but also elevated the overall antioxidant 
status. Simultaneously, there was a notable reduction in the 
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expression of amyloid-beta (Aβ) [111]. Under comparable 
circumstances, the nanoemulsions of TQRF and TQ exerted 
an influence on the activity of γ- and β-secretase enzymes. 
This, in turn, led to an augmentation in the degradation of Aβ 
and its removal from the brain [112]. 

It was reported that the nanosized particles of Ginkgo 
biloba extract facilitated the release of acetylcholine 
neurotransmitter from specific brain regions when 
compared to animals in the control group and these 
nanosized particles demonstrated improved bioavailability 
and enhanced absorption characteristics [113]. In addition 
to, the use of a niosome formulation for G. biloba extract 
resulted in prolonged release of flavonoid glycosides, 
leading to enhanced oral bioavailability, and improved 
pharmacokinetic properties, indicating that the niosome 
formulation serves as an effective delivery system for G. 
biloba extract to reach the brain [114]. Nanoencapsulated 
quercetin was formulated and tested on a neuronal model 
of oxidative stress injury. The neuroprotective effects of the 
encapsulated QC were more pronounced when compared 
to animals treated with free quercetin [115]. Furthermore, 
Intranasal piperine-loaded chitosan nanoparticles exhibited 
enhanced efficacy with a reduced dosage of a piperine than 
piperine alone in Alzheimer’s disease model [116].

Within the realm of nanotechnology, polymeric micelles 
have emerged as a highly successful approach for the 
site-specific delivery of various drugs. They have proven 
successful in precisely delivering diverse drugs to specific 
sites and their stability upon dilution surpasses that of 
surfactant micelles, primarily attributed to a lower critical 
micelle concentration (CMC) [117,118]. Serving as effective 
nanocarriers, polymeric micelles utilize their hydrophobic 
core to encapsulate poorly water-soluble drugs, thereby 
enhancing solubility and stability [117]. This capability 
is instrumental in delivering therapeutic agents precisely 
to targeted locations within the body, thereby improving 
bioavailability it is particularly valuable for enhancing 
the effectiveness of medications with limited solubility in 
aqueous environments [117,118]. Are a part of a class of 
copolymers that are amphiphilic, which combine to form 
assemblies at the nanoscale (1-200 nm). Polymeric micelle, 
like Polyethylene Glycol, has been utilized as a hydrophilic 
block for the delivery of many anticancer medicines, including 
doxorubicin (DOX) [119-121], paclitaxel (PTX) [122-124] 
camptothecin (CPT) [125], and β lapachone [126,127].

Many other examples of innovative formulations are 
continuously added to the market including phytosomes, 
micro-emulsions, niosomes, solid lipid nanoparticles (SLNs) 
among others. Within the realm of biological interventions, 
solid lipid nanoparticles encapsulating curcumin (CSLNs) 
demonstrated a positive impact on 3-nitropropionic acid 

(3-NP)-induced Huntington’s disease in rats. Animals 
treated with CSLNs exhibited a noteworthy improvement 
in the activities of antioxidant enzymes such as SOD and 
glutathione. Simultaneously, there was a notable reduction 
in mitochondrial swelling, reactive oxygen species (ROS), 
protein carbonyls, and lipid peroxidation [128].

Polymeric and lipid-based nanoparticles (lipid nano 
capsules (LNCs), nanostructured lipid carriers (NLCs), 
nanoemulsions (NE) and self-emulsifying drug delivery 
systems (SEDDS), ethosomes, and cyclodextrins are examples 
of nano-formulation systems designed to get around the 
delivery constraints of native phytocannabinoids [17]. 

Designing Prodrugs

Prodrugs are bioreversible versions of drug molecules 
that undergo enzymatic and/or chemical changes in the 
body to release the active parent drug after administration, 
ultimately enhancing absorption and allowing it to produce 
the intended pharmacological effect [129]. To put it another 
way, Prodrug design is another technique, involving the 
modification of a drug’s chemical structure to create a 
prodrug and solve the obstacle of poor bioavailability of 
some NPs. Prodrugs play a crucial role in drug discovery and 
development, serving as a recognized strategy to enhance 
the physicochemical, biopharmaceutical, or pharmacokinetic 
characteristics of active pharmaceutical agents [129]. 
Approximately 5–7% of globally approved drugs fall under 
the category of prodrugs, and there is an increasing trend in 
incorporating the prodrug approach during the early stages 
of drug discovery [129]. 

For example, the standard method for curcumin involves 
the attachment of promoieties to the phenolic hydroxyl groups 
through a biodegradable linkage [130]. A lipidic prodrug of 
curcumin, di-O-decanoyl curcumin, was prepared by Singh, 
et al. [131], and Han, et al. examined the pharmacokinetics 
of the prepared prodrug in intravenous administration to 
male Wistar rats at a dose equivalent to 1 mg/kg of curcumin 
and after administration the concentration of the prepared 
prodrug and curcumin released by the prepared prodrug 
decreased gradually [132]. 

Enhancing Bioavailability (Bioavailability 
Enhancers)

The term “biopotentiation,” also referred to as 
“Yogvahi,” indicates the use of herbs to raise a drug’s 
plasma concentration and is employed in Ayurvedic 
medicine [23,133]. In 1979, the use of bioenhancer terms or 
bioavailability enhancers can be traced to ancient medical 
documents, of course with no scientific rationale or scientific 
intention. Prof. C.K. Atal (a pioneer pharmacologist) noticed 
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the prevalence of Piper longum among a wide range of 
Ayurvedic preparations targeting different diseases [134]. 

Piperine has the potential to impact the bioavailability 
of co-administered drugs allowing for increased absorption 
and potentially enhancing their therapeutic effects. Piperine 
acts as an inhibitor for both the transporter protein human 
P-glycoprotein (P-gp) and the metabolic enzyme CYP3A4 
[135]. Piperine has been found to enhance the bioavailability 
of various substances, including barbiturates, beta-
carotene, coenzyme Q10 (CoQ10), dapsone, ethambutol, 
isoniazid, nalorphine, phenytoin, propranolol, pyrazinamide, 
rifampicin, sulfadiazene, theophylline, vitamin B-6 
(pyridoxine), selenium (from selenomethionine), curcumin 
(extracted from turmeric), amino acids (with increased 
absorption) and glucose (with increased absorption) [134]. 
Moreover, The effect of piperine on the bioavailability of 
curcumin was studied by Shoba, et al. in rats at doses of 
20 mg/kg and in healthy human volunteers at doses of 2 g. 
When piperine was given concurrently, the Tmax increased 
but the elimination half-life and clearance significantly 
decreased, and the bioavailability increased by 154%. On the 
other hand, bioavailability increased by 2000% in humans. 
The study found that piperine has no adverse effects on rats 
or humans and raises the serum levels, degree of absorption, 
and bioavailability of curcumin [136]. Additionally, in a study 
conducted by Pattanaik and colleagues, the impact of piperine 
(20 mg orally) on the pharmacokinetics of carbamazepine 
was investigated in epilepsy patients receiving either a 300 
mg or 500 mg dose. The examination of pharmacokinetic 
parameters from blood samples obtained at regular times 
following the administration of carbamazepine alone and in 
combination with piperine indicated a significant increase 
in the mean plasma concentrations of carbamazepine 
in both dose groups. Notably, there was a statistically 
significant elevation in AUC (area under the curve), average 
C(ss) (steady-state concentration), and a decrease in K(el) 
(elimination rate constant) in both dosing groups. Moreover, 
in the 500 mg dosage group, the injection of piperine led to 
a substantial increase in both Cmax (peak concentration) and 
Tmax (time to reach peak concentration). The study concluded 
that piperine could markedly enhance the oral bioavailability 
of carbamazepine, potentially by lowering its excretion and/
or enhancing its absorption [137]. Another study conducted 
by Janakiraman, et al. aimed to incorporate piperine, a 
bioenhancer, into oral formulations of ampicillin trihydrate. 
The physical compatibility and stability of a combination 
of Ampicillin Trihydrate and Piperine (1:1) were assessed. 
In the context of oral formulations containing ampicillin 
trihydrate, the conducted investigations revealed that 
piperine has the potential to serve as a formulation additive, 
leading to a bioavailability enhancing effect [138].

According to C.K. Atal, most Ayurvedic formulations 

included Trikatu or one of its constituents, particularly 
Piper longum (P. longum) (210 formulations out of 370 
evaluated), which is used to treat a wide range of diseases. 
Atal hypothesized that the inclusion of Trikatu improved 
formulational efficacy. Three components make up Trikatu: 
ginger (Zingiber officinale), black pepper (Piper nigrum) and 
long pepper (Piper longum). Subsequent investigation based 
on this hypothesis revealed that one of these components, 
namely “P. longum,” or “Piper,” one of them, enhanced the 
bioavailability of numerous drugs [139].

Numerous studies have shown that natural flavonoids 
have the potential to improve health by treating diabetes 
mellitus and obesity. They also reveal that these flavonoids 
have improved bioavailability and act on multiple molecular 
targets [140]. Genistein, an isoflavone molecule, is well-
recognized as a phytoestrogen [141]. When genistein 
and paclitaxel were administered together, the intestinal 
absorption of paclitaxel, a substrate for efflux transports like 
MRP2 [142], P-gp [143], and BCRP [144], and was increased 
significantly due to the discovery that genistein might inhibit 
P-gp, BCRP, and MRP2 efflux function. The enhancement 
of paclitaxel systemic exposure was also facilitated by 
genistein’s inhibition of the efflux transporters [145]. After 
oral paclitaxel treatment at a dose of 30 mg/kg in rats, a dose 
of genistein (10 mg/kg) resulted in a rise in AUC (54.7%) and 
a decline in the total plasma clearance (35.2%) [145,146]. 

Additionally, the rabbits treated with quercetin had 
substantially higher plasma concentrations, an area under 
the plasma concentration-time curve (AUC), and a peak 
concentration (Cmax) of diltiazem than the group that was 
not treated since diltiazem was found to be metabolized by 
CYP3A4 in the small intestine and liver [147,148], and the 
P-gp efflux pump prevented diltiazem from being absorbed 
through the intestinal mucosa [149]. The suppression of the 
P-gp efflux pump and the metabolizing enzyme CYP3A4 in 
the intestinal mucosa may have contributed to the elevated 
AUCs and Cmax of diltiazem by quercetin pretreatment, in 
addition to reports on its capacity to inhibit the P-gp efflux 
pump [150,151], and to limit the CYP3A4 metabolizing 
enzyme [152,153].

Another bioenhancer in grapefruits is naringin, a 
flavonoid glycoside that provides grapefruit juice with its 
bitter flavor [154]. Naringin exhibits diverse pharmacological 
effects, including antioxidant properties [155,156] the 
reduction of blood lipid levels [156], and anticarcinogenic 
activities [157,158]. Additionally, studies have indicated that 
naringin can inhibit P-gp [153], and CYP3A1/2 [159] in rats. 
When orally administered in pretreatment (10 and 3.3mg/
kg) 30 minutes before intravenous paclitaxel administration, 
naringin significantly enhanced the area under the curve 
(AUC) of paclitaxel. The improvements were notable, with 

https://medwinpublishers.com/BEBA/


Bioequivalence & Bioavailability International Journal10

Singab ANB, et al. Unveiling Revealing Nature's Bounty: A Comprehensive Exploration of 
Bioavailability in Natural Products. Bioequiv & Bioavailab Int J 2024, 8(1): 000226.

Copyright©  Singab ANB, et al

AUC increases of 49.1% and 40.8% for naringin doses of 10 
and 3.3 mg/kg, respectively [160].

A research study that used an in vivo mice model 
examined the impact of co-ingestion of grape extract and 
blueberry extract. Targeted metabolomic profiling of mice’s 
plasma and feces given either a grape extract (266.4 mg/kg), 
a blueberry extract (31.1 mg/kg), or both showed that the 
combination of the two extracts increased the concentrations 
of blueberry phenolic metabolites in plasma by 3-5 times, and 
this led to a corresponding reduction in thier reduction in the 
feces [161]. Also in a recent study, the influence of flavonol-
rich foods (onion peel and Dendropanax morbifera) on the 
bioavailability of green tea catechins was investigated using 
both in vitro (gastrointestinal digestion/Caco-2 cells) and in 
vivo (Sprague Dawley rats) models. The ingestion of green 
tea catechins with onion peel and Dendropanax morbifera 
led to a notable increase in cellular uptakes of epicatechins, 
reaching up to 188%. Moreover, rats supplemented with 
green tea containing 5% onion peel exhibited an almost 
twofold higher plasma concentration of total epicatechins 
compared to those receiving green tea alone. This observed 
effect is likely attributable to the flavonols’ role in enhancing 
digestive stability and influencing the biotransformations of 
epicatechin [162].

Recently, the bioavailability enchancing capability of 
pirperine the active principle of P. longum, had been justified. 
Onion juice (rich with quercetin) had positively affected the 
bioavailability of epigallocatechin gallate, inhibition of P-gp 
by quercetin may be an underlying reason. Genstien (an 
isoflavonoid present in soya beans) demonstrated increased 
bioavilability of paclitaxel through inhibition of P-gp, BCRP 
and MRP2 efflux pumps. Aloe gel and Aloe leaves had shown 

significant effect in improving the bioavilability of vitamin C 
and vitamin E. Grape juice (rich with Naringin flavonoid) had 
demonstrated significant increase in plasma concentration 
of paclitaxel mainly through the inhibitory effect of naringin 
on CYP3A1/2, one of paclitaxel metabolizing enzymes. The 
alkaloid sinomenine act as a bioavailability enhancer and 
showed increased oral bioavilability of the monoterpene 
glucoside paeoniflorin through inhibition of P-gp [1]. 

Herbal Processing Methods 

One of the most widely used adjuvants in processing is 
wine. Rats’ pharmacokinetic responses to crude and wine-
processed Dipsacus asper (DA) were examined by Tao, et 
al. [163]. Following processing, the amount of phenolic 
acids in DA was substantially lower than in the raw herb, 
but the amount of saponins and iridoids was much higher. 
The administration of wine-processed DA aqueous extracts 
resulted in a significant increase in the area under the plasma 
concentration-time from zero to the last quantifiable time-
point (AUC0-t) values and the Cmax values of most components 
when compared to the rats in the crude herb administration 
group. These variations may be related to wine’s facilitating 
impact, which made it easier for nutrients to enter the 
bloodstream. Another explanation for this phenomenon 
could be that wine-processed herb had more loose tissues, 
more small pores, a larger total surface area, and a smaller 
fractal dimension than crude herb. This allows the solvent 
to penetrate the loose tissue and alter its internal structure, 
which in turn increases the dissolution of herb-containing 
components [164]. Rhizoma Coptidis and Schisandra 
Chinensis fructus treated with wine showed comparable 
outcomes [165,166].

Figure 1: Integrated Framework for Assessing and Enhancing Bioavailability of Natural Products: Factors, Evaluation methods, 
Mechanisms, and Approaches.
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 For many years, the traditional Chinese herbal medication 
Dipsacus asper has been used in China to treat bone 
ailments, including rheumatoid arthritis, osteoporosis, and 
bone fractures, as well as traumatic hematomas, uterine 
hemorrhage, and liver and kidney deficiencies [167]. Figure 
1 demonstrates an integrated framework to assess and 
enhance the bioavailability of natural products.

Implications for Future Research and 
Applications

Addressing gaps in current research, adopting emerging 
technologies, and taking regulatory considerations into 
account are all necessary for navigating future issues.

The findings underscore the need for further research 
aimed at enhancing the bioavailability of natural products to 
harness their full therapeutic potential in modern medicine. 
Subsequent research endeavors ought to concentrate on 
inventive approaches to surmount the challenges presented 
by inadequate solubility, extended metabolism, and restricted 
absorption. Prodrug design, formulation optimization, and 
nanotechnology have all emerged as potential strategies 
for boosting the bioavailability of natural compounds. 
Comprehensive investigations into the metabolic pathways 
and the detection of bioactive metabolites should be included 
in the research agenda as well. This deeper understanding 
will facilitate the development of more targeted, efficacious, 
and successful interventions. Future research should delve 
into the identification of bioactive metabolites and their 
roles in clinical outcomes.

Conclusion 

In conclusion, Natural products play a pivotal role in 
modern medicine, offering a vast reservoir of bioactive 
compounds with diverse therapeutic applications. Extracted 
from plants, microbes, and marine organisms, these 
compounds have contributed significantly to drug discovery 
and development. For instance, the anti-cancer drug 
paclitaxel derived from the Pacific yew tree, the antimalarial 
artemisinin isolated from Artemisia annua, and the analgesic 
morphine extracted from the opium poppy exemplify the 
profound impact of natural products on medical treatments. 
Their chemical diversity and biological activities make them 
valuable candidates for drug development. However, the 
bioavailability of these compounds poses a critical challenge, 
influencing their efficacy in clinical settings. Challenges such 
as poor aqueous solubility, extensive first-pass metabolism, 
and limited gastrointestinal absorption contribute to 
suboptimal bioavailability. Overcoming these obstacles 
requires innovative strategies, including nanotechnology, 
prodrug design, and formulation optimization. Addressing 
this issue is paramount to fully exploit, propel and unlock the 

therapeutic potential of natural products into the forefront 
of modern medical interventions. By leveraging cutting-edge 
technologies and gaining a nuanced understanding of their 
metabolic fate, researchers can pave the way for enhanced 
therapeutic outcomes, bringing the rich potential of natural 
products to the forefront of medical innovation.
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