v

MEDWIN PUBLISHERS

Committed to create value for Ressarchers

Bioinformatics & Proteomics Open Access Journal

Application of Clustering and Biclustering Techniques to Yeast

Metabolic Cycle

Alfonso GB*

University of Salamanca, BISITE Research Group, Spain Research Article

Volume 1 Issue 1
Received Date: September 12, 2017

Published Date: September 20, 2017

*Corresponding author: Alfonso Gonzalez-Briones, University of Salamanca,

BISITE Research Group, Edificio I+D+I, 37007 Salamanca, Spain, Email:

alfonsogb@usal.es

Abstract

Clustering is probably the most used techniques in the analysis of gene expression data. The goal of this technique is
to find clusters of genes that have similar expression patterns. The basic assumption behind clustering approaches is
that two genes with similar expression patterns are mechanically related. There are many ways in which two genes
could be related (when activated by the same transcription factor, when one acts as a transcription factor for the
other, when involved in the same biological process and therefore similarly regulated by the cell, etc.). This work will
refer to a previously presented research paper -Yeast Metabolic Cycle - which studies genes that have similar
expression patterns, we will use them to demonstrate how data mining techniques are applied to bioinformatics. A
variety of tools is leveraged in order to apply Clustering and Bi clustering techniques and gains a better

understanding of the biological problems we encounter in the field of systems biology.
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Introduction

Clustering is a commonly used technique in the
analysis of gene expression data. Its goal is to find
clusters of genes that have similar expression patterns.
The basic assumption behind clustering approaches is
that two genes with similar expression patterns are
mechanically related. There are many ways in which
two genes could be related (when activated by the same
transcription factor, when one acts as a transcription

e The identification of an algorithm that solves the
mathematical problem by optimizing the score that
describes the quality of a cluster or grouping.

e Analysis of results using additional knowledge and
data. Choosing a measure of similarity is only a part
of the first step.

By looking at the clustering algorithms developed in

factor for the other, when involved in the same
biological process and therefore similarly regulated by
the cell, etc.). Gene expression analysis alone is
generally not sufficient to reveal what kind of
relationship links the genes.

A cluster analysis consists of three main steps:
¢ The selection of a mathematical representation that
reflects the biological issue.
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recent years, we can clearly observe the tendency to
include more and more biological considerations in the
formulation of problems. Groups with a more
traditional focus, such as k-means and hierarchical
groupings, place each gene exactly in a cluster. Methods
of this type are the most widely used and have proven
to be useful in many studies.
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As a general rule, the assumption that all genes
behave similarly under all conditions is too restrictive.
To account for this, Biclustering approaches carry out
clustering in both dimensions simultaneously: genes
and conditions. This allows to find subgroups of genes
that exhibit the same response under a subset of
conditions, e.g. if a cellular process is only active under
these conditions. In addition, if a gene participates in
multiple pathways that are differentially regulated, it
would be expected for this gene to be included in more
than one group, this cannot be achieved by traditional
clustering. Several Biclustering algorithms have been
proposed in the literature, the strengths and
weaknesses of these algorithms are manifested when
applied to different biological scenarios. Therefore, it
would be worthwhile to test the different approaches
and choose which algorithm offers the best results.

In this work a data mining study will be carried out
using Clustering and Biclustering techniques. HCE3,
Expander, BicAT and BicOverlapper tools have been
used for the visual analysis of gene expression
experiments. In addition to these tools, approaches
employing clustering methods have been introduced to
systems to classify genes from microarray through
multi-agent systems [1,2] and to obtain genes that show
different levels of expression in patients with the same
type of cancer [3]. They focus on the integration of
expression, relationships and function in order to gain a
better understanding of biological problems in the
scope of systems biology.

This article is structured as follows. Section 2
introduces the experiment. Section 3 details the
clustering algorithms and the results obtained. Section 4
describes the applied Biclustering algorithms and the
results obtained from their application. The last section
shows the obtained conclusions and suggestions for
possible future work.

Material and Methods

As in any Data Mining work, the structure consists of

the following sections:

e Definition of the problem. The problem is clearly
defined and ways of using the data are considered in
order to obtain an answer to the problem. These
tasks are translated into questions such as the
following:

o What do we want to find? What types of
relationships are we looking for?

o Do we want to make predictions from the mining
model or just look for interesting associations and
patterns?

o What result or attribute do we want to predict?

e Preparation of the data. The data that has been
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identified in the previous step is consolidated and
cleaned. Data can be scattered and stored in different
formats; it may also contain inconsistencies such as
missing or incorrect entries.

e Exploration of data. Data is explored in order to
understand the problem, during this process we
explore whether the dataset contains faulty data and
then devise a strategy to correct the problems or get
a deeper description of the behaviours that are
typical of the type of problem.

e Generation of the model. The columns of data that
will be used in the model are defined, in this way a
mining structure is created. The data mining
structure is linked to the data source, but does not
actually contain any data until it is processed.

e Exploration and validation of the model. Before
deploying a model in a production environment, it is
advisable to test if it works properly. Normally, when
generating a model, several models with different
configurations are first created and tested in order to
see which one delivers the best results to the
problem and to the data.

e Implementation and updating of the model. Once
data mining models are in the production
environment, depending on the needs different tasks
can be performed.

Introduction to the Dataset

The selected dataset is GDS2267: Metabolic cycle:
time course of the GSE3431 series
(https://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc
=GDS2267). The summary of the dataset is provided:
Analysis of nutrient-limited continuous-culture cells at
12-25 minute intervals for 3 cycles. Cells grown under
such conditions exhibit robust, periodic cycles in the
form of respiratory bursts. Results provide insight into
molecular mechanisms responsible for controlling
metabolic oscillations.

Preparation of the Dataset

Once the data set is downloaded, we will have to
prepare the set to be able to work with it, this will be
done by eliminating information that is not relevant to
the experiment such as the title, research institute,
description, cycles, subsets and discarding control
probes and probes without notation. In order to make
identification easier, reference numbers will be
substituted by the name of each gene, and the GSM by
its corresponding T period.

Clustering

HCE3

Clustering algorithms will be applied in this first part
of the experiment using the HCE3 tool [3].

Copyright© Alfonso GB.
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Algoritmo HCA

One of the features of good clustering algorithms is
the ability to determine the number of natural groups in
the data set. However, most of the existing clustering
algorithms require users to specify the number of
groups they want to generate. This requirement causes
clustering algorithms to create unnecessary merges or
splits, which produce unnatural clusters. On the other
hand, the natural number of clusters depends mainly on
user preferences or the application itself. A possible
solution to this problem is to use the Hierarchical
Agglomeration Aggregation (HCA) algorithm that allows
the user to control the parameters and determine the
appropriate number of groups. Unlike most clustering
algorithms, HCA generates a hierarchical structure of
groups rather than sets of groups. The HCA algorithm
works as follows, if we want to group n data elements,
and we have n * (n-1) / 2 similarity (or distance)
between the values of all possible pairs of n data
elements:

1. Initially, each data element occupies a cluster by
itself. So there are n groups at the beginning.

2. Find a cluster pair whose similarity value is the
highest, and make the pair a new cluster.

3. Update the similarity values between the new cluster
and the remaining groups.

4. Steps 2 and 3 apply n - 1 times before there is only
one cluster of size n..

There are many possible options for updating the
similarity values in the third step. Among them, the
most common are linkage-complete, link-media and
simple-linkage. Full-binding sets the similarity values
between the new cluster and the remaining groups to
be the least similar between each member of the new
cluster and the rest. The average-linkage uses the
average similarity value as new similarity values. We
can observe the results of applying the HCA algorithm,
represented as dendrograms in Figure 1.
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Figure 1: HCA Cluster.

At first glance, none of the clusters seems to contain
any of the results obtained in the research (Logic of the
yeast metabolic cycle) [4] associated with the stated
dataset, that is, one that groups MRPL10, POX1, RPL17B
or YOX1.

As our reference we take the expression obtained in
the research work on genes with a similar expression

level to POX1, in this way we will be able to see a
pattern of similar behaviour between clusters [5,6].

One of the clusters generated by the HCA algorithm
presents in some intervals similar values of the group
show in Figure 2. Some of these time intervals may be
11 and 21. In Figure 3 we see the values and the graph
of the values of interval 11.
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Figure 2: Expression clusters surrounding the POX1 gene.
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Figure 3: Group expression values according to interval 11.

In Figure 4, Graph of the time intervals, low expression values of the group in interval 11 are observed.
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Figure 4: Expression values of the group according to range 11.

In Figure 5 we observe interval 21, the values are low as in the research work used for reference in this paper.
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Figure 5: Expression values of the group according to range 21.
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In Figure 6 we see interval 21, as in the previous
image and as it comes in the expression level of the

research cluster, has a low level.
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Figure 6: Value of Expression of the Interval of time 21.

K-Means Clustering
Using the HCA algorithm, no satisfactory results were

algorithm with a correlation value of 0.959 was applied,
obtaining groups with reference genes of 0.961 as
indicated in the research paper (Figure 7).

obtained. For this reason, the K-Means clustering

GDS2267
Row-by-Row normalization by Standardization (Mean and Stdev)
Average Linkage
Eudlidean
6635 fems
36 Variables

Minimum Similarity = 0.959 # of Clusters = 106 of Alones = 6114

& of Items Left = 521

B v PPl i o st s P ===l

Figure 7: Clusters with a correlation of 0.959.
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The clusters that have appeared do not contain the
group of genes that is grouped around MRPL10, POX1
and RPL17B during the metabolic cycle in the phases of
oxidation, replication and synthesis. Since the HCE3 tool
does not order the time intervals from highest to lowest
in cluster visualization, this prevents direct
visualization, since this makes it necessary to look at the
expression of each gene in each time interval and the
rest of the other genes, making the job more tedious.

Alfonso GB. Application of Clustering and Biclustering Techniques to Yeast
Metabolic Cycle. Bioinform Proteom Opn Acc] 2017, 1(1): 000102.

Expander

The Expander tool allows you to carry out all the
necessary steps in any analysis; Pre-processing of data,
normalization, identification of differential genes,
application of clustering algorithms and biclustering [7-
9]. Expander is a tool that allows working with the
chosen dataset very visually, as shown in Figure 8.

Copyright© Alfonso GB.
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Figure 8: Data Set displayed in the Expander tool.

Expander unlike HCE3, does not disorder the time
intervals, we can see how they have the same
expression level as those shown by the genes, MRPL10,
POX1 and RPL17B, with respect to the images that have
been taken from the work used as reference in this
research.

As shown in Figure 9 & Figure 10, the level of
expression is first high, then it lowers significantly, then
it peaks and drops two times more and finally ends with
another high level of expression.

10

0.1 d=—r—r=—r=—r—r—r=—r—r—r—r———r—r—r—r—

Time interval

Figure 9: Expression clusters surrounding the MRPL10 gene.

MRPL10
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Figure 10: Expression of the MRPL10 gene.

Alfonso GB. Application of Clustering and Biclustering Techniques to Yeast
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As we see in Figure 11, in intervals 6 and 7 a greater from interval 27 to interval 30.

expression occurs, which is repeated in interval 18 and

EEEES SEESESEEEE CEEEEEE N EERR
Figure 11: Expression of the POX1 gene.

RO

Figure 12 shows the level of representation of the
RPL17B gene over the time interval, unlike the graph in
Figure 13, we see how the level of expression has

different values. According to the values of the data set
the highest levels of expression occur earlier than those
visualized in the research.

“"REL17H

Figure 12: Expression of the RPL17B gene.
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Figure 13: Expression cluster surrounding the RPL17B gene.

Algoritmo Click

Click is an algorithm, developed by the same research
group that has developed the Expander tool, clustering
applicable to the analysis of gene expression, as well as
other biological applications. No previous assumptions
are made about the structure or number of clusters. The
algorithm uses graphical and statistical techniques to

identify clusters of very similar elements (kernels),
which probably belong to the same true cluster.

The use of this algorithm has generated 27
algorithms; some of these clusters have shown a similar
result to the eleventh illustration, MRPL10 gene, (Figure
14).

Cluster_17 (74 probes)

P =t bl
ocoooooD

Figure 14: Cluster with similar expression level around MRPL10.

Alfonso GB. Application of Clustering and Biclustering Techniques to Yeast
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This cluster has 74 genes with a level of homogeneity
of 0.430 and the matrix of expression that it shows, is
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the one that we can observe in Figure 15.
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Figure 15: Cluster generated by the algorithm Click MRPL10.

However, in this cluster we did not find the other
genes that do appear in the research cluster.

The HCA Algorithm

Since information on the initial centroids is not
available, the ideal would be to carry out a hierarchical
analysis, the tools that it offers can be used to select the
number of groups. With this information, we will
perform an analysis that will allow us to maximize the
homogeneity within each group and the heterogeneity
between groups.

Alfonso GB. Application of Clustering and Biclustering Techniques to Yeast
Metabolic Cycle. Bioinform Proteom Opn Acc] 2017, 1(1): 000102.

We will then try to cluster with the HCA algorithm,
we will perform simple, middle and complete
hierarchical clusters. Full-binding sets the similarity
values between the new cluster and the remaining
groups to obtain the least similarity between each
member of the new cluster and the rest.

The average-linkage uses the average similarity value

as new similarity values. The simple linkage takes it to
the maximum, (Figure 16).
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Figure 16: Simple hierarchical cluster surrounding the MRPL10 gene.

According to this simple bonding method, the
distance between two groups is the distance between
the nearest members or elements. This is why this
method is also called "nearest neighbour”. In this type
of cluster, we should see some genes that by "nearness”
we should have found some genes with which it shares
level of expression in the phases of descent of oxygen

consumption that is when it reaches its highest levels of
expression.

It differs from the previous one in that the distance
between two groups is given by the distance between
its most distant members. This method is also known as
the "farthest neighbour" (Figure 17).

|

Figure 17: Hierarchical cluster complete with MRPL10 gene.

Alfonso GB. Application of Clustering and Biclustering Techniques to Yeast
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In theory, due to the constitution of this type of
cluster we should not find any gene that shares a large
number of characteristics and no gene appears as
expected.

Biclustering

The common characteristics of clustering techniques
are summarized in the search for disjoint sets of genes,
such that those genes found in the same cluster present
a similar behaviour before all microarray conditions. In
addition, each of the genes must belong to a single
cluster (and not to none) at the end of the process.

Biclustering techniques are presented as a more
flexible alternative, since they allow clusters to form not
only on a dimensional basis, but also to form biclusters
containing genes that exhibit similar behaviour before a
subset of microarray conditions. This feature is very
important, since it increases the ability to extract
information from the same microarray, -certain
conditions before which a group of genes is not co
expressing can be ignored. In the same way, it is also
possible to do biclustering in the reverse direction that
is, selecting characteristics in terms of a particular
subset of genes, although this view has been less
studied since it is less biologically interesting.

Another important aspect that differentiates
biclustering techniques from clustering techniques is
the way in which clusters are made, since they can now
overlap (several genes can be contained in several
biclusters at the same time), there are also genes (or
conditions) that have not been included in any subset.
This feature gives more flexibility to this type of
technique, since it does not oblige to include each gene
in a given grouping, instead if a gene’s expression values
do not fit any of the patterns, this gene will not belong
to any biclusters. Also, it is possible for the same gene to
belong to several biclusters, the same gene can
participate in several cellular functions simultaneously
if in each of the biclusters it is considered a subset of all
the experimental conditions.

Normally, the problem of locating biclusters in a
microarray is more complex than clustering, since there
are many more possibilities when grouping the data.
The different biclusters obtained can be classified
according to different types, which will vary depending
on the particular method that is being used to obtain
them.

Alfonso GB. Application of Clustering and Biclustering Techniques to Yeast
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The four main types are listed below:

e Biclusters with constant values. This type of
biclusters corresponds to sub matrices that contain
identical values in all positions. In them, all genes
have the same expression value against all
contemplated conditions.

¢ Biclusters with constant values in rows or columns.
They are biclusters whose genes exhibit a similar
behaviour against the conditions, albeit with different
expression values for each gene, in the first case. In
the case of biclusters with constant values in
columns, we collect a set of conditions, where in each
of them the genes present the same expression value,
but varying from one condition to another. In the
second case, the genes exhibit identical behaviour
between them.

e Biclusters with consistent values. This type of
biclusters gathers relations between genes and
conditions that do not have to be direct, but are
obtained from a numerical analysis of the data
contained in the matrix.

¢ Biclusters with consistent evolutions. The biclusters
that present coherent evolutions present a main
difference with respect to the previous ones, since
they ignore the concrete numerical values to work
with the evolutions or behaviour of the data, seen as
symbols.

Expander

The Expander tool also allows you to use biclustering
algorithms.
Algoritmo Samba: Samba is a novel biclustering
algorithm for identifying gene modules that exhibit
similar behaviour under a subset of examined biological
conditions. Samba is an efficient way to discover
statistically significant biclusters in large-scale
biological data sets, consisting of hundreds or
thousands of diverse experiments. It extends the
standard clustering approach by detecting subtle
similarities between genes across subsets of
measurement conditions and allowing genes to
participate in several biclusters. It is therefore more
suitable for the analysis of heterogeneous datasets.

Following the MRPL10 gene as a reference, 31
biclusters have been made, in three of these biclusters
the MRPL10 gene appears. In Figure 18, you can see the
first bicluster that has been generated.

Copyright© Alfonso GB.
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Bicluster_6

Figure 18: Bicluster with the MRPL10 gene.

In the last bicluster, the RML2 gene has been found
again, but no other gene had been expressed at the
same times (Figure 20).

In the first biclusters we have found genes that
appear in the research as the RML2 gene, but we did not
obtain a large group of genes similar in expression
levels at the same time intervals. The second bicluster
does not show genes that would coincide in the phases
of oxidation of genes in the same time interval, genes
that coincide in these phases in the research that we use
as reference (Figure 19).
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Figure 19: Bicluster with the MRPL10 gene.
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Figure 20: Bicluster with the MRPL10 gene.

BicOverlapper

The BicOverlapper [10,12] tool first displays the data
on a parallel coordinate axis, representing the
expression profiles in lines whose height is proportional
to the expression level in each condition (vertical axis).
In the background, box diagrams are shown with the
distribution of values for each condition. In Figure 21,
once a profile is selected we can see the representation
of an expression level.
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Figure 21: Parallel Coordinates.

In Figure 22, the heat map of the microarray is
shown; it is a classic representation of expression
profiles, on a blue-white-red color scale for low-medium

high expression. The heat map is only displayed when a
profile is selected, a reduced number of elements.
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Figure 22: Heat map of the selected Microarray profile.

Algoritmo BiMax: The Bimax algorithm is cataloged as
a "divide and conquer” algorithm, itsearchfor the
rectangles consisting of ones in the binary matrix.
Starting with the entire data matrix, it is recursively
divided into a chessboard format. Since the algorithm
only works with binary data, data sets must first be
converted into binaries. To perform tests, a threshold
(threshold per percentage) has been used: Expressions
with values above the given threshold are set to 1, and
the others to 0. Therefore, it is expected that the Bimax
algorithm will only find unregulated biclusters [12].

For the execution of the Bimax algorithm the exact
size of the expected biclusters is established, that is to
say, the minimum number of genes of each bicluster
since otherwise we could finish prematurely, recovering
only a small part of the expected biclusters. The
parameters that have been chosen for the execution of
the algorithm were a minimum of 15 genes per
bicluster, and a maximum of 20 groups. After the
execution no post - filtering has been performed (Figure
23).
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Figure 23: Result of applying BiMax with BicOverlapper.
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Once executed, several very close clusters have been whether the rest of genes in these groups share a
selected; they are the ones that appear in purple. similar level of expression (Figure 24).
Among these groups is the MRPL10 gene, let's see

Figure 24: Heat map of a selected cluster group.

You can see how there are 3 columns, one in the first lower or higher level. An attempt was made to remove
time intervals, another in the intervals 10-12, one of this last bicluster group. You can observe the result of
smaller thicknesses in the intervals 20-24 and another deleting this group from the selected clusters in Figure

in the end. It is also seen that, from the middle to the 25.
bottom a block is expressed in almost all intervals at

%) Overlapper 4

<I

[v

Figure 25: Selecting Groups after Applying BiMax.
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We can also observe that from the middle to the bottom
a block is expressed in almost all intervals at lower or
higher level. It was attempted to remove this last

bicluster group. Figure 26 shows the complete heat
map.
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Figure 26: Heat map of selected cluster group.

Certain patterns of behavior were detected in the
levels of expression, however we did not detect any of
the genes that appear in the research paper, with which
it shares these characteristics. Nevertheless, we did
discover other genes which share the time intervals,
where they are expressed at the same time and at a
similar level of expression.

Plaid Algorithm: Plaid adjusts the parameters to a
generative model of data known as the plaid model: a
data element Xj;, with k biclusters assumed current, is
generated as the sum of background effects 6 and
cluster effects y, row effects a, the effects of  columns
and random noise e:

K
X; =0+ Z(”k + ot + B )Pk + €5,

k=1

where the background refers to any element of the
array that is not a member of any bicluster. The Plaid
algorithm conforms to this model by iteratively
updating each model parameter to minimize the MSE
between the modelled data and the true data.

A row release coefficient of 0.8 and a column of 0.2
has been determined and a filtered post is not
performed once executed (Figure 27).

|4 Parallel Coordinates 1
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Figure 27: Running the Plaid Algorithm.
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A row release coefficient of 0.8 and a column of 0.2
have been determined and post-filtering is not
performed once executed. In the selected group we
obtained the following set of genes (Figure 28).

Figure 28: Cluster with the POX1 gene obtained with
Plaid.

In this set of genes, we find the POX1 gene. This
sentinel gene encodes a peroxisomal fatty-acyl
coenzyme A (CoA) oxidase. The peak POX1 gene
expression occurs as dissolution of the oxygen that has
been accumulated during the YMC.

In research wherePOX1 was used as a guide, a group
of genes was identified with very similar temporal
expression patterns, most of which are annotated in
coding proteins involved in fatty acid oxidation and
peroxisomal function. The coordinated expression of
these genes strongly suggests that fatty acid oxidation
preferably occurs when the cells fail to breathe. In our
bicluster, we have only found another gene called
ARO9that appears in the research along with POX1
(Figure 29).

Figure 29: Similar genes in the bicluster generated by
Plaid.

We see that it has the same expression level at T8,
T19 and in the range of T28-T31. The results are equal
to those shown in figure 4, both at the expression level
and in the non-expression state. There is an average
overlap between both genes, as shown in the following
illustration. The gene in bold is POX1 and the other gene
is ARO9 (Figure 30).

Figure 30: POX1 and ARO9 genes in parallel coordinates.

Conclusion

The main objectives of the application of data mining
techniques are to predict and group data that present a
high degree of similarity. In this work, we focused on
the field of bioinformatics, specifically in relation to the
raised hypothesis; the recognition of genes that present
similar levels of expression. One of the most important
techniques is Clustering; its aim is to form groups of
genes that share common characteristics. The

Alfonso GB. Application of Clustering and Biclustering Techniques to Yeast
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application of these techniques allows understanding
the functionality of genes, their regulation and cellular
processes. One of the disadvantages of using this
technique is that each cluster of genes is defined using
the experimental conditions of the hypothesis.

However, the use of Biclustering techniques allows to
perform the grouping in two dimensions
simultaneously, ie, each gene is selected using only a
subset of conditions and only a subgroup of genes is

Copyright© Alfonso GB.
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chosen from each condition of a bicluster. Giving the
identification of genes and subgroups with similar
conditions applying Clustering on the rows and columns
at the same time. These techniques are ideal when there
are clusters of genes in a dataset that share common
characteristics that are unknown a priori. The degree of
agreement of the results of the study based on yeast
research, such as Saccharomyces cerevisiae, with reality
depends to a great degree on the quality and reliability
of the data used for the study.

Some of the data on genes seemed to have been
duplicated, and with different values in the data set
leaving us with the first occurrence of the repeated
genes and deleting the repetitions, this fact may have
been able to alter the results of the results.

In nature, most of the behaviours of living things are
governed by some kind of reason or pattern, this is why
data mining has many diverse applications. Thus, the
field of data mining is being researched profusely and
continues to experience great developments, not only in
commercial applications but also in academic work.
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