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Abstract 

Cell walls are complex structures surrounding plant cells. They provide not only mechanical support and protection against 

environmental changes, but also a mean for cell-to-cell communication. They are mainly constituted of polysaccharides 

(about 90% of their mass) and proteins. Cell wall proteins (CWPs) play critical roles because they contribute to the 

plasticity of the cell wall architecture during development and in response to biotic and abiotic environmental changes. 

Their systematic identification has started in the 2000’s with the sequencing of the genome of the Arabidopsis thaliana 

model plant and the development of adapted mass spectrometry (MS) technologies. Since then, many other plants have 

been studied among which plants of agronomical interest. The description of cell wall proteomes has fully benefited not 

only from the improvement of MS technologies, but also from better sample preparation and peptide separation prior to 

MS analysis. Bioinformatics has also played critical roles by designing software allowing protein identification, annotation 

and quantification, as well creating MS data repositories. 
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Introduction 

     Plant cell walls constitute an extracellular 
compartment playing many roles during development 
and adaptation to environmental biotic and abiotic 
changes [1-4]. They are named primary cell walls as long 
as cells are growing, and they become secondary cell 
walls when cells differentiate to specific functions. The 
major components of primary cell walls are 
polysaccharides which fall into three categories: cellulose, 
hemicelluloses and pectins [5]. Secondary cell walls may 
contain additional polymers such as lignins [6]. All these 
compounds are present in different proportions 
depending on plant tissues and on plant species and their 

structure can be modified thanks to cell wall proteins 
(CWPs). Although present in minor amounts in cell walls, 
CWPs play major roles in cell wall structure, plasticity and 
signaling [7-9]. CWPs can degrade, ligate or even modify 
polysaccharides, e.g. polygalacturonases which are able to 
degrade pectic homogalacturonans [10], xyloglucan endo-
transglycosyl hydrolases (XTHs) which cut and religate 
hemicellulosic xyloglucans [11], and pectin 
methylesterases (PMEs) which demethylate 
homogalacturonans [12]. These modifications have 
consequences on the properties of cell walls. For a long 
time, cell walls models only included the so-called 
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structural proteins which were assumed to form 
covalently linked networks giving rigidity to cell walls and 
protecting cells from pathogen invasion [5,13]. Besides, a 
few CWP families were characterized from biochemical 
studies. However, a clear picture of the cell wall proteome 
was not available, thus leading to an under-estimation of 
the physiological roles of cell walls. 
 
     By the end of the 1990’s, proteomics studies started to 
develop thanks to impressive progresses in mass 
spectrometry (MS) technologies and to the availability of 
newly sequenced genomes. The first plant genome to be 
sequenced was that of the model plant Arabidopsis 
thaliana [14]. Then, the genomes of several plants of 
economical interest became available, such as those of 
rice [15], tomato [16], Medicago truncatula [17], and 
linum [18]. Numerous proteomics studies have then 
published among which those restricted to organelles, 
such as chloroplasts [19], mitochondria [20] and nuclei 
[21]. The case of cell walls was more puzzling because cell 
walls are an open compartment difficult to purify [22]. It 
contains minor amount of proteins and can be easily 
contaminated by intracellular proteins including the very 
abundant photosynthesis proteins. This mini-review aims 
at summarizing the main steps of the successful story of 
plant cell wall proteomics which started about twenty 
years ago with the first description of a small cell wall 
proteome by Robertson et al. (1997) [23]. 
 
     In this founding article, cell suspension cultures were 
washed with salt solutions in order to elute CWPs from 
their walls without breaking their plasma membranes, 
thus using a so-called non-destructive method [23]. 
Twenty proteins were identified after separation by 1D-
electrophoresis (1D-E) and Edman N-terminal 
sequencing. Later on, many other strategies were 
designed to increase the size of cell wall proteomes [24]. 
They include: (i) the improvement of cell wall purification 
procedures to limit the contamination by intracellular 
proteins in the so-called destructive methods [25]; (ii) the 
diversification of the salt solutions used to elute CWPs 
[26,27]; (iii) the introduction of affinity chromatography 
to separate proteins according to their charge or to their 
N-glycosylation status [28-32]; (iv) the use of 1D-E for 
protein separation prior to tryptic digestion because 
CWPs are mostly basic glycoproteins poorly separated by 
2D-E [33]; (v) the use of combinatorial peptide ligand 
library (CPLL) chromatography to get access to minor 
CWPs [34,35]. More recently, shotgun analyses omitting 
the protein separation step have been successfully 
performed [36] and the first systematic quantitative 
analysis of CWPs has been published [37]. Altogether, 

many different types of organs have been analyzed 
including roots, leaves, inflorescences, fruits, seeds and 
cell suspension cultures (for an overview, see 
WallProtDB, www.polebio.lrsv.ups-tlse.fr/WallProtDB/). 
Plant cell wall proteomics studies have also greatly 
benefited from the improvement of peptide separation 
prior to MS analysis and the increase performance of 
mass spectrometers, from MALDI-TOF MS to LC-MS/MS. 
Finally, the careful bioinformatics annotation of the 
identified proteins has allowed (i) better distinguishing 
proteins predicted to be secreted from intracellular 
proteins, and (ii) assigning predicted functions to more 
than 85% of the identified proteins. In this purpose, two 
bioinformatics tools have been designed in our team: (i) 
ProtAnnDB (www.polebio.lrsv.ups-tlse.fr/ProtAnnDB/) is 
a pipeline of prediction of sub-cellular localization and 
functional domain using bioinformatics programs publicly 
available [38]; (ii) WallProtDB is a plant cell wall 
proteomics database collecting published cell wall 
proteomes after curated annotation of the identified 
proteins, based on the presence of predicted functional 
domains and on experimental work [39]. To facilitate the 
comparisons between cell wall proteomes, CWPs are 
grouped in nine functional classes in WallProtDB [33]: (i) 
proteins acting on polysaccharides like glycoside 
hydrolases [7,40]; (ii) oxido-reductases like class III 
peroxidases [41]; (iii) proteases [42]; (iv) proteins 
possibly related to lipid metabolism like non-specific lipid 
transfer proteins (ns-LTPs) [43]; (v) proteins possibly 
involved in signaling like arabinogalactan proteins (AGPs) 
[44]; (vi) proteins having interacting domains with 
proteins or polysaccharides like lectins [45]; (vii) 
structural proteins like extensins [46]; (viii) 
miscellaneous proteins; and (ix) proteins of yet unknown 
function. It should be mentioned that the functional class 
comprising the structural proteins is the smallest because 
of the difficulty to extract such proteins which are 
covalently linked to the other cell wall components 
[47,48]. This grouping helps getting an overview of newly 
described cell wall proteomes, but as all classifications, it 
has limitations and it has to evolve to take into account 
newly characterized proteins.  
 
     Nowadays, the size of newly described organ cell wall 
proteomes has been increased to 250 to 400 CWPs 
[27,34,36], i.e. at the most twenty times as large as the 
first described cell wall proteome. Presently, the larger 
plant cell wall proteome is that of A. thaliana which 
comprises more than 900 CWPs and covers about half of 
the predicted one (see WallProtDB). The second larger 
cell wall proteome is that of Brachypodium distachyon, 
which a monocot model plant, with nearly 600 CWPs.  
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     CWPs route through the secretion pathway where they 
undergo post-translational modifications (PTMs) [49]. 
The best described are N-glycosylation, Pro hydroxylation 
and O-glycosylation. All these PTMs can be critical for 
protein structure and/or biological activity. Proteomics 
has also brought new information regarding this PTMs. 
Affinity chromatography on the concanavalin A (ConA) 
lectin has allowed the separation of N-glycoproteins and 
their identification. In some cases, the location and 
structure of N-glycans could also be described [29,30,50]. 
More recently, some studies have addressed the question 
of the localization of hydroxyproline (Hyp) residues 
resulting from the hydroxylation of Pro residues by 
prolyl-hydroxylation. Hyp residues were initially 
described in structural proteins such as extensins and in 
AGPs [51-53]. It seems that they are present in more 
protein families and that there is some variability in their 
distribution, so that it is yet difficult to propose a 
universal Pro hydroxylation code [34,54]. Finally, O-
glycosylations are very difficult to describe because of the  
complexity of the structure of O-glycans. They require  

dedicated studies and thus cannot yet been included in 
omics strategies [55,56]. 
     The importance of bioinformatics in proteomics 
flowcharts needs to be stressed (Figure 1). First of all, the 
access to annotated genomes with well-predicted open 
reading frames is critical. Prediction of exon-intron 
junctions has to be accurate and, if possible, curated with 
sequenced RNAs as for RefSeq sequences [57]. Indeed, 
MS-based proteomics is based on the comparison 
between mass lists of tryptic peptides, which are 
fragmented or not depending on the MS instrument, and 
theoretical mass lists calculated from the protein 
sequences present in databases [58,59]. Then, as stated 
above, when proteins are identified, it can be important to 
predict both their sub-cellular localization, especially to 
check the quality of sub-cellular proteomics experiments, 
and their functional domains [60,61]. This information 
allows assessing the biological role of proteins of interest 
and designing relevant experiments to demonstrate it 
[38,62]. Finally, public data repositories have been set up 
to permit sharing MS data [63].  
 

 

 

Figure 1: Bioinformatics in proteomics flowcharts. The steps involving biochemistry 
techniques are in blue whereas those requiring bioinformatics are in green. The step labeled 
with a star is omitted in shotgun analyses. 

 
     Altogether, cell wall proteomics studies have brought a 
large amount of information during the twenty last years 
and they have provided an overview of cell wall 
proteomes. In particular, many more proteins families 
playing roles in polysaccharide modifications are included 
in the present description of cell walls [7]. In the mean 
time, a lot of new functions have been described for CWPs 
thanks to genetics studies. For example, the role of CWPs 

in cell-to-cell communication has been illustrated by 
several examples including the release of signaling 
peptides by extracellular proteases to induce cell 
differentiation or plant defense mechanisms [64]. Next 
important issues in plant cell wall proteomics concern the 
identification of more structural CWPs, a better 
characterization of CWP PTMs, advances in the 
description of the extracellular peptidome and the 
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systematic quantification of proteins. Finally, the question 
of the existence of alternative non-conventional routes of 
protein secretion also needs to be solved [65]. Indeed, all 
the published cell wall proteomes mention the presence 
of proteins predicted to be intracellular [24]. However, to 
our knowledge, only a sunflower jacalin devoid of 
predicted signal peptide, has been shown to be secreted 
through the release of exosomes [66]. Some alternative 
mechanisms have been described in animal cells [67], but 
remain to be established for plant cells.  
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