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     Regulated secretion empowers stimulus-controlled 
release of bioactive molecules in all endocrine cells. 
Chromogranins are known to play an important role in all 
the steps of the regulated secretion viz. granulogenesis, 
acidification and maturation of granular matrix of the 
secretory cells. Over-expression of the granin proteins in 
the non-secretory cells can induce granulogenesis. 
Chromogranins modulates the open probability of the 
IP3Rs (IP3 Receptor type 1) with several folds and hence 
involved in the calcium homeostasis, involved in the cargo 
maturation and are processed by prohormone convertase 
to produce multiple bioactive peptides. Thought 
researcher accumulated plenty of data about their 
functional involment in different processes but how 
chromogranins facilitate these functions is still a point of 
discussion. In this mini review we are going to discuss 
about the current perspective of the Chromogranins and 
the lack of the complete information about their mode of 
involment in different cellular functions. 
 
     Chromogranins are first identified in the mid of 1960s 
in the chromaffin granules that were aimed to study the 
physiology of the catecholamine in mammals [1,2]. The 
name Chromogranin was proposed by the Schneider, et al. 
in 1967 [3]. First member of the family was chromogranin 
A followed by other members of the family as 
chromogranin B (SgI), Chromogranin C (SgII), 1B1075, 
HISL-19, 7B2 and NESP55. The Chromogranins are 
distributed ubiquitously regulated secretory pathway of 
the endocrine, neuroendocrine and neuronal cells [3-10]. 
Primary structure analysis demonstrates that granins are 
acidic in nature and encompasses many pairs of the basic 

amino acids which are potential cutting sites for the 
prohormone convertases in the acidic environment. 
 
     Chromogranins A and B involved in secretory granule 
biogenesis of secretory cells [11-13]. Immunostaining 
studies have demonstrated the granulogenic roles of 
chromogranins in both neuroendocrine and endocrine 
cells [12]. Expression of the granins in non-
neuroendocrine cells, such as NIH3T3 or COS cells that do 
not normally contain secretory granules, induce 
formation of secretory granules in these cells, whereas 
suppression of granin expression in neuroendocrine cells 
substantially reduce the number of secretory granules 
formed in these cells [11-13]. It was initially reported that 
only CHGA, but not CHGB, is capable of inducing granule 
formations [13], which was proved to be wrong in later 
studies [11,13]. The granulogenic capability of CHGB is, in 
fact, shown to be greater than that of CGA in certain 
conditions [12]. All these studies are based on the 
suppression/knockout of the specific granin protein in 
the particular secretory cells or animals. The granulogenic 
function of the chromogranin was specific for the cells 
types. Due to that it was difficult to generalize even 
though it is true for many cases. The research to explain 
the mechanism involved the in granulogenic function of 
the Chromogranin proteins has not been focused yet. 
 
     The calcium was highly concentrated in the secretory 
granules which was thought to be because of the presence 
of large content of acidic chromogranins that have a high-
capacity, low-affinity Ca2+-binding ability. Chromogranin 
A binds 32–55 mol of Ca2/mol, with dissociation 
constants (Kd) of 2.7–4 mM [14], whereas chromogranin 
B binds 50–93 mol of Ca2/mol, with Kd of 1.5–3.1 mM 
[15,16]. As a result, most (99.9%) of the intragranular 
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calcium stays bound to chromogranins [14,17-21]. 
Chromogranins are also known to bind catecholamines 
[22] and ATP [23] that exist in secretory granules at 600 
mM and 150 mM, respectively [24,25]. Chromogranin A is 
reported to bind 32 mol of norepinephrine/mol, with a Kd 
of 2.1 mM [22]. The intragranular content released from 
the chromaffin cells of CHGA-knockout mice, were shown 
to be reduced 30% [26], suggesting the role of 
chromogranin A in the storage of catecholamines. It was 
also shown that chromogranin interacts with ATP 
through the adenine base of the nucleotide [23]. The 
IP3Rs are calcium release channels in the secretory 
granules. It was shown that chromogranins A and B bind 
to the IP3R and modulates its activity at low pH values 
[27], increasing the open probability of the channels 8- to 
16-fold and the mean open time 9- to 42-fold [28,29]. At 
physiological pH, CHGA fails to bind the receptor while 
CHGB still can bind and modulates it activity [27-29], 
suggesting critical roles played by chromogranins in both 
storage and flux of the intragranular calcium through the 
IP3R/Ca2+ channels [30]. The binding of calcium to the 
chromogranins was reported by many studies based on 
the presence of high contents of the negatively charged 
amino acids but direct evidence that how chromogranins 
are involved in the storage of the high amount of the 
calcium. The interaction of the chromogranins (CHGA & 
CHGB) was based on the pull down assay but the 
interaction was very week [31] and also we are not able 
to repeat these results in our laboratory. So it might 
possible that chromogranins did not interact directly to 
the IP3Rs or interactions were transient so almost 
impossible to form the complex once they are purified 
from the cells. Thought chromogranins modulates IP3Rs 
channels which were reported by multiple studies. 
 
     After exocytosis i.e. after release from the secretory 
granules, chromogranins further employed in an 
important physiological function. Large amounts of the 
chromogranins are released in the blood stream. The 
secreted chromogranins serve as the source of the many 
bioactive peptides, including catestatin, vasostatin, 
pancreastatin, and secretoneurin, that circulate in the 
bloodstream [32-40]. Among a variety of functions that 
are attributed to these peptides, catestatin and vasostatin 
are known to control the release of catecholamines 
[32,33] and blood vessel dilation [34,36], respectively, 
whereas pancreastatin and secretoneurin are known to 
reduce glucose metabolism [38] and to potentiate 
angiogenesis [36,37], respectively. Recently, Alexendra, et 
al. [42] reported the association of chromogranin A with 
gut microbiome. According to their data chromogranin A 

was exclusively associated with 61 microbial species 
whose abundance was ~ 53% of the microbials present in 
the gut microbiome. As usual this study also lacks the 
molecular mechanism underlying the association of the 
CHGA with gut microbiome. 
 
     The granin proteins reviewed here share many 
structural and biochemical features. Most of the members 
contribute to very diverse functions within the regulated 
secretory pathway of endocrine and neuronal cells. 
Chromogranin-derived peptides provide autocrine, 
paracrine, and endocrine signals, with a range of 
bioactivities. Characterization of KO mouse models in 
preclinical studies and human genetic analyses suggests 
important functional roles and specific disease 
associations of granin peptides. Relatively abundant and 
selective expression of these secreted proteins in the 
nervous system and in endocrine and neuroendocrine 
tissues has led to their increased utility as biomarkers of 
disease and therapeutic efficacy. The main challenges 
moving forward will be to identify the molecular 
mechanisms underlying different cellular functions of the 
chromogranins. First step towards understanding the 
molecular mechanism of the granins is to elucidate their 
structure under different conditions as in the presence of 
the Calcium, at low pH values, in the presence of the lipids 
or in association with membrane and in complex with 
different proposed interacting proteins (IP3Rs and CPE). 
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