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Abstract 

Stress is not affected only on brain but also on the other parts of body like changes in heart rate, blood pressure levels, 

circadian rhythm etc. Recent studies have been established that exposure to stress promotes alterations in several 

epigenetic characters like histone acetylation and methylation as well as DNA methylation, in various limbic brain 

regions. Chromatin remodeling processes are necessary for learning and memory. However, abnormal epigenetic 

modifications can lead to cognitive deficits. DeltaFosB (ΔFosB) is protein of Fos family. FosB gene forms FosB and ΔFosB 

as product. Increased expression of FosB over ΔFosB in nucleus accumbens (NAc) region of brain protects animals from 

the deleterious effects of chronic stress. Moreover, epigenetically, H3K9me2 is enriched at the FosB promoter in NAc of 

human depressed patients. FosB has very low life while ∆FosB has exceptionally long life span. Thus persists for long 

time in the stress condition and leads to depression and anxiety. It has also been revealed that elevation in ∆FosB level 

occurs due to chronic stress condition. The epigenetic factors responsible for stress are governed by ∆FosB expression 

level. The expression of ∆FosB in turn depends on the presence of serum response factor (SRF) transcription factor. SRF 

transcription factor is encoded by srf gene. To understand the mechanism of stress condition, srf gene can be one of the 

promising targets to uncover the problems related to stress conditions. 
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Abbreviations: SRF: Serum Response Factor; Nac: 
Nucleus Accumbens; PTSD: Post-Traumatic Stress 
Disorder; HPA: Hypothalamic-Pituitary-Adrenal; BDNF: 
Brain Derived Neurotrophic Factor; TPA: Tissue 
Plasminogen Activator; CRF: Corticotrophin Releasing 
Factor; Ecb: Endocannabinoids; FAAH: Fatty Acid 
Aminohydrolase; GR: Glucocorticoid Receptor; ERK: 
Extracellular Signal-Regulated Kinase; MAPK: Mitogen-

Activated Protein Kinase; HDAC: Histone Deacetylase; AD: 
Alzheimer's disease; HMTs: Histone Methyltransferases; 
SAM: S-adenosylmethionine. 
 

Introduction 

     Stress is not always what it seems to be. Stress can be 
divided into three categories: good stress; tolerable stress 
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and toxic stress. Early life stress can alter neural 
architecture thus can lead to toxic stress, development of 
psychopathologies such as post-traumatic stress disorder 
and depression [1,2]. There is a strong inter-individual 
variability in susceptibility to stress. Most of the 
individuals remain resilient: they can maintain normal 
physiological and psychological functions despite being 
subjected to horrendous stress [3,4]. Stress does not 
occur due to any single reason. A lot of factors are 
responsible for the stress condition. It can be genetic or 
epigenetic factors. In this increasing technological world, 
the standard of living of a person defines its mental and 
social health along with the physical health. Increasing 
work pressure adversely affects the health condition and 
leading cause of stress in humans. 
 
     Chronic stress refers to intense traumatic events like 
accidents, physical assault, sexual assault, natural 
disasters, or combat exposure, leading to 
psychopathologies such as complex post-traumatic stress 
disorder (PTSD) or non-traumatic but major events in life, 
whereby an individual is exposed to sustained periods of 
stress, for example, care giving, difficult divorce, or a 
stressful work environment leading to burnout [2]. 
 
     The brain is the central organ for processing and 
adapting to various social and physical stresses, as it is 
the organ that stores memories, regulate physiological 
and behavioral responses and determines what is 
threatening for the body [5]. The thought of a stressful 
situation activates many neuronal circuits, particularly 
hypothalamic-pituitary-adrenal axis (HPA axis), the locus 
coeruleus and autonomic noradrenergic centers in the 
brain stem [6,7]. 
 
     Various mediators that help to adapt to stress include: 
cell surface mediators, cytoskeletal mediators, epigenetic 
regulation and non-genomic mechanisms [8]. Exposures 
to multiple stressors and dysregulation of the non-linear 
interactions lead to wear and tear of the body and the 
brain. This is termed as allostatic load and overload [5,9]. 
Allostasis is the active process of adapting to stressors via 
mediators such as cortisol and autonomic, metabolic and 
immune system that act together in a non-linear fashion 
to maintain homeostasis [10]. 
 
     The effect of stress is not only on brain but also on the 
other body parts like changes in heart rate, blood 
pressure levels, circadian rhythm etc. Chromatin 
remodeling processes are necessary for learning and 
memory. Abnormal epigenetic modifications can lead to 
cognitive deficits. Moreover, it has been observed in 

various studies that exposure to stress promotes 
alterations in various epigenetic marks; in particular, 
histone acetylation and methylation as well as DNA 
methylation, in various limbic brain regions. 
 

There are Some Molecules that are 
Necessary/Permissive for Remodeling 

a) Brain derived neurotrophic factor (BDNF): It is a 
facilitator of plasticity and growth. BDNF 
overexpression blocks effects of chronic stress. BDNF 
haplo insufficiency prevents stress induced plasticity 
[11,12]. 

b) Tissue plasminogen activator (tPA): It is a secreted 
signaling molecule and protease. It is required for 
stress-induced spine loss in hippocampus and medial 
amygdala. It is required for acute stress-induced 
increase in anxiety. Corticotrophin releasing factor 
(CRF) is responsible for activating tPA. CRF in 
amygdala regulates tPA release [13,14]. 

c) Corticotrophin releasing factor (CRF): It is secreted in 
hippocampus by interneurons. It downregulates thin 
spines via RhoA signaling [14,15]. 

d) Lipocalin-2: It gets activated at the time of acute stress. 
It downregulates mushroom spines. Lipocalin-2 KO 
increases neuronal excitability and anxiety [16,17].  

e) Endocannabinoids (eCB): It gets induced via 
glucocorticoids. It regulates emotionality and HPA 
habituation and shut off.  

 
     CB1 receptor KO increases anxiety and basolateral 
amygdala dendrite length and causes stress like 
retraction of prefrontal cortical dendrites, likely through 
the regulation of glutamateric transmission. 
 
     Fatty acid aminohydrolase (FAAH) is a key regulator of 
eCB action [18-20]. 
 

Stressors Alter Gene Expression Via Following 
Mechanisms 

a) Direct effect of glucocorticoids on gene transcription 
b) Activation of epigenetic mechanisms involving histone 

modification and methylation/hydroxyl-methylation of 
CpG residues in DNA [21,22]. 

 

Epigenetic Mechanism behind the Stress 
Condition 

     Many genes that get altered after glucocorticoid and 
chronic stress exposure in the hippocampus are known as 
epigenetic regulators [23]. For example; social defeat 
stress in rodents showed changes in both histone 
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methylation and acetylation. The mechanism underlying 
this includes: Glucocorticoid, via glucocorticoid receptor 
(GR), facilitates signaling of extracellular signal-regulated 
kinase (ERK)-mitogen-activated protein kinase (MAPK) 
(ERK-MAPK) pathway to downstream mitogen and stress-
activated protein kinase-1(MSK-1) and ElK-1.The 
activation of this pathway results in serine 10(S10) 
phosphorylation and lysine 14(K14) acetylation at 
histone H3 i.e.H3S10p-K14ac. This leads to induction of 
immediate early genes, c-Fos and Erg-1 [24,25]. 
Epigenetically, H3K9me2 is enriched at the FosB 
promoter in NAc of human depressed patients. 
Expression of a construct containing a transcriptionally 
repressive domain (Fosb-ZFP-G9a) decreased FosB 
expression and increased the level of the repressive 

histone modification H3K9me2 [26]. It has also shown 
that expression of Fosb-ZFP-G9a increased depression-
like behavior in a chronic social defeat stress model, 
indicating that the H3K9me2 modification mediates this 
effect [26]. Increased expression of FosB over ΔFosB in 
nucleus accumbens region of brain protects animals from 
the deleterious effects of chronic stress [26].  
 
     Vialou, et al. have used bitransgenic mice that inducibly 
overexpress ΔFosB specifically in the adult NAc and 
dorsal striatum to test the functional consequences of 
ΔFosB induction. These mice have shown a reduced 
propensity to develop social avoidance after four or ten 
days of social defeat (Figure 1) [27]. 

 
 

 

Figure 1: ΔFosB induction in nucleus accumbens (NAc) region by chronic social defeat stress mediates resilence. 
Inducible bitransgenic mice over expressing ΔFosB in D1type MSNs do not develop the social aversion, which is a 
hallmark of social defeat stress after either 4or 10days of defeat with mice tested on days 5 or 11, respectively [27]. 
 
 
     Corbett, et al. demonstrated that spontaneous seizures 
increase expression of ΔFosB, a highly stable Fos-family 
transcription factor, in the hippocampus of an Alzheimer's 
disease (AD) mouse model [28]. ΔFosB suppressed 
expression of the immediate early gene c-Fos, which is 
critical for plasticity and cognition, by binding its 
promoter and triggering histone deacetylation. Acute 
histone deacetylase (HDAC) inhibition or inhibition of 
ΔFosB activity restored c-Fos induction and improved 
cognition in AD mice. Administration of seizure inducing 
agents to nontransgenic mice also resulted in ΔFosB-

mediated suppression of c-Fos, suggesting that this 
mechanism is not confined to AD mice. These results 
explain observations that c-Fos expression increases after 
acute neuronal activity but decreases with chronic 
activity. 
 
     The Fos family proteins heterodimerize with Jun family 
proteins (c-Jun, JunB or JunD) to form active activator 
protein-1 (AP-1) transcription factors that bind to AP-1 
sites, which is present in the promoters of certain genes 
to regulate their transcription. These Fos family proteins 
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are induced rapidly and transiently in specific brain 
regions after acute administration of many drugs of abuse 

[29]. Very different responses have been observed after 
chronic administration of drugs of abuse (Figure 2). 

 
 

 

Figure 2: Scheme showing the gradual accumulation of ΔFosB versus the rapid and transient induction of other Fos family 
proteins in response to stress or another stimulus [29]. 
 
 
     FosB gene forms FosB and ΔFosB as product. ∆FosB is 
protein of Fos family. These FosB have very low life while 
∆FosB has exceptionally long life span. Thus persist for 
long time in the stress condition and leads to depression 
and anxiety. 
 
Two mechanisms are responsible for the stability of 
ΔFosB:  
a) ΔFosB has a deletion of 2degron domains at the C 

terminal as compared to FosB. One of the domain 
targets FosB for ubiquitylation and degradation in 
proteosome and the other targets FosB degradation by 
an ubiquitin and proteasome independent manner 
(Figure 3). 

b) ΔFosB is phosphorylated by several protein kinases at 
its N-terminal, which stabilizes the protein. 

 
     Earlier it was noticed that ∆FosB gets activated due to 
alcohol consumption but the mechanism was not clear. 
Pauli, et al. [30] identified different patterns of 
FosB/DeltaFosB expression during withdrawal between 

EtOH_High and EtOH_Low groups [30]. They also showed 
that behavioral variability observed in acquisition phase 
of ethanol induced locomotor sensitization is 
accompanied by distinct neuronal plasticity during 
withdrawal period. In addition, their results suggested 
that different patterns of FosB/Delta FosB expression 
detected in sensitized and non-sensitized mice were more 
related to withdrawal period rather than to the chronic 
drug exposure, probably due to the tolerance of drug-
induced FosB/DeltaFosB transcription. 
 
     It has also been discovered that elevation in ∆FosB 
level occurs due to chronic stress condition. Decreasing 
the expression of ∆FosB or increasing the level of FosB 
can help in relieving from stress. ∆FosB is produced due 
to activation of serum response factor (SRF) that is coded 
by the gene Srf gene. 
 
     ∆FosB is unique in that it accumulates in response to 
repeated stimulation due to its unusual protein stability 
[31]. 
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Figure 3: Biochemical basis of ∆FosB’s unique stability. ∆FosB is formed by deletion of some portion of FosB as shown in 
the figure, which provides the unique stability to ∆FosB [29]. 
 

 

Epigenetics  

     Epigenetics is the mechanism that regulates genomic 
information by chemical modifications to DNA and 
histones that can alter cell and tissue specific patterns of 
gene expression [32,2]. These reversible modifications of 
DNA and chromatin structure mediate the interaction of 
the genome with a variety of environmental factors and 
generate changes in the pattern of gene expression in 
response to these factors [32]. An epigenetic trait is a 
stable, mitotically and meiotically heritable phenotype 
that results from changes in the pattern of gene 
expression without alterations of the DNA sequence [32]. 
 

Epigenetic mechanisms 

A. DNA Methylation: 
Methylation of cytosine residue at 5’position results in 
projection of methyl group into the major groove ofDNA 
[33]. In mammals, this predominantly occurs in the 
palindromic sequence 5’-CpG-3’. The location of CpG 
bases in mammalian DNA occurs at high concentration in 
some specific regions called CpG islands. 
 
     CpG methylation in promoter region generally 
represses transcription of genes.DNA methylation is 
catalysed by DNA methyltransferases (DNMTs) [34]. 
DNMTs can directly interact with transcription factors, 
performing the methylation of promoter region at specific 

locations. Nearly 80 transcription factors are found to be 
associated with DNMTs [35]. 
 
B. Histone Modifications: 
 In case of eukaryotes DNA is packed densely into 
chromatin through interactions with large protein 
complexes, nucleosomes. Nucleosome core is composed of 
histone octamer. The N-terminal tails of histones exhibit 
multiple, reversible covalent modifications. These alter 
the accessibility of DNA to the transcriptional machinery 
in a regulated fashion [36]. 
 
a) Acetylation: Histone acetylation (Figure 4) negates 

positive charge of lysine residue in histone tail. It is 
associated with transcriptional activation [37,38]. 
Histones are acetylated by histone acetyltransferases 
(HATs). HATs use acetyl coenzyme A as a cosubstrate. 
Deacetylation occurs by histone deacetylases (HDACs). 
HATs acetylate multiple lysine residues in the tails of 
both H3 and H4 [36]. 

b) Methylation: Histone methylation (Figure 4) is linked 
with both transcriptional repression and activation 
depending on the residue being methylated and the 
extent of methylation. Both arginine residues can be 
methylated. Methylation occurs by histone 
methyltransferases (HMTs). It uses S-
adenosylmethionine (SAM) as a co substrate [39]. 

c) Many other modifications of histone tails include 
phosphorylation (Figure 4), ubiquitination, 
sumoylation and ADP ribosylation etc [36]. 
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Figure 4: Molecular epigenetic modifications. Histone modifications like acetylation, methylation, phosphorylation etc 
and the non-coding RNA and the DNA itself convey the epigenetic information and coordination between DNA and 
transcription and chromatin modification machinery (Adapted from Griffiths, et al.)[40,8]. 
 

 
C. Non Coding RNAs 
Many types of ncRNAs are well known, such as ribosomal 
(rRNA) and transfer (tRNA) RNA, lncRNAs and various 
short varieties, including micro (miRNA), small nuclear 
(snoRNA), promoter associated small RNAs (PASR), Piwi-
interacting RNA (piRNA), and transcription initiation 
(tiRNA) types [36]. 
 

Antidepressants 

     The use of antidepressant drugs used till date are 
generally increasing the level of stress response 
hormones such as cortisol, norepinephrine, 
adrenocorticotropic hormone, endorphins etc. thus 
leading to relieve from stress. 
 

However many associated drawbacks have been seen 
related to antidepressant action: 
1. They work in too few people i.e. response rates within 

6-8weeks are around 70% while resubmission rates 
are sometimes considerably lower. 

2. It takes too long until the work i.e. the patients have to 
wait sometimes more than 2 months, until they get 
markedly better. 

3. Despite substantial improvement among new 
antidepressants, they still have too many side effects 
like tiredness, restlessness, sexual dysfunction, weight 
gain and in some cases even aggressiveness [41]. 

 
     The effects of the epigenetic modifications of FosB and 
Delta FosB, are summarized in table 1. 

Epigenetic modifications FosB DeltaFosB 

Histone 3 (H3) Acetylation Lysine 14 acetylation - 

Effects 
Modulate drug and stress evoked behavior and gene 

expression [42]. 
- 

Methylation H3K9me2 Lysine 9 methylation 

Effects 

H3K9me2 enrichment at FosB is suppressed in 
 the NAc by repeated cocaine dose and it also 

 increased at FosB in the NAc of depressed humans. 
Local overexpression or knockdown of G9a in NAc 

potently controls drug  
and stress responses in rodent [43]. 

The role of histone methylation 
changes at c-Fos and Egr-1 

immediate-early genes  
(IEGs) is still unclear [42]. 

Table 1: Effects of epigenetic modifications of Fos B and Delta Fos B. 
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Conclusion and Future Directions 

     The epigenetic factors responsible for stress are 
governed by ∆FosB expression level. The expression of 
∆FosB in turn depends on the presence of SRF 
transcription factor. SRF transcription factor is encoded 
by srf gene. On knocking out the srf gene, ∆FosB would 
not get formed thus epigenetic cause of stress can be 
eliminated. Moreover the epigenetic modification i.e. 
H3K9me2 can be altered back to H3S10p-K14ac 
epigenetic modification [8].This epigenetic-editing 
approach, with assessments of physiological changes in 
gene expression, uncovers clear differences in the stress-
induced phenotypes by Fosb gene manipulation. Such 
targets may be used to help initiative to develop 
antidepressant drug in future years. Ultimately, studies of 
ΔFosB elucidate the ways in which it is possible to 
elaborate detailed transcriptional mechanisms of stress 
and anti-stress action. Recent study demonstrated a 
molecular mechanism by which epileptic form activity 
might contribute to cognitive deficits in Alzheimer’s 
disease and epilepsy. This mechanism highlights seizure-
induced ΔFosB as a transcription factor that critically 
regulates hippocampal memory [2]. We propose that 
through the use of CRISPR-Cas9 technology, N-terminal of 
ΔFosB in human can be modified. The novel mechanistic 
understanding may provide new insight into improved 
treatments of stress. 
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