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Editorial

Macrophages are mononuclear phagocytic cells, which 
have varied phenotypes and perform diverse intricate 
functions ranging from inflammation to their role in onset 
and progression of fibrotic diseases [1-3]. After development 
and differentiation of myeloid progenitor cells in the bone 
marrow, monocytes are released into the bloodstream and 
these monocytes infiltrate into tissue during inflammation 
and mediate tissue repair [4]. Macrophages are present 
in all tissues of human body and depending on tissue 
microenvironments, they develop into specialized cells like 
osteoclasts (bone), microglial cells (brain), kupffer cells 
(liver), Langerhans cells (skin) and macrophage derived 
dendritic cells [5].

Macrophages are classified as M1 macrophages and M2 
macrophages depending on the activation stimuli, expression 
of surface antigens, secretome and their biological functions. 
Macrophages can also switch between polarization states 
during the course of disease progression in response to 
microenvironmental stimuli [6]. M1 macrophages are 

classically activated macrophages with pro-inflammatory 
responses and are typically induced by immune system 
as part of innate immunity and antitumor immunity [7]. 
M1 macrophages produce proinflammatory cytokines like 
TNF-α and IL1-β and contribute to microbial defense. While 
M1 macrophages are critical for host defense, excessive 
and prolonged M1 response can contribute to chronic 
inflammatory conditions and tissue damage [8].

M2 macrophages are alternatively activated and are 
divided into the following subgroups. M2a macrophages are 
fibrotic macrophages which secrete copious amounts of TGF-β, 
a key driver of fibrosis [9,10]. M2a macrophages also increase 
the local production of extracellular matrix (ECM) proteins 
and play critical roles in wound healing and tissue repair 
[10]. M2b macrophages are regulatory macrophages with 
anti-inflammatory function and are stimulated by immune 
complexes, apoptotic cells in conjunction with TLR ligands. 
M2b macrophages do not secrete ECM proteins and inhibit the 
effects of pro-inflammatory cytokines [4]. M2b macrophages 
signal disease remission in lupus nephritis mouse models 
[11]. M2c macrophages are anti-inflammatory macrophages 
which are efficient in clearing apoptotic cells and debris. These 
macrophages can also be therapeutic in treatment of chronic 
diseases where apoptotic cells trigger autoimmune responses 
[12,13]. Balance between M1 and M2 macrophages is critical 
for maintaining immune homeostasis and tissue health.

Polarization Classification Identification Markers Function
M1 Pro-inflammatory CD80, CD86, MHC II, TNF-α Antimicrobial and antitumor immunity

M2a Pro-fibrosis CD163, CD206, Arginase 1, iNOS Wound healing, matrix remodeling and tissue repair
M2b Immune regulation CD86, MHC-II, CCL1, IL6R Antigen presentation and Th2 differentiation
M2c Anti-inflammatory B7-H4, CD150, CD206 Phagocytosis of apoptotic cells

Table 1: Macrophage phenotypes and identification markers.
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Macrophages have garnered significant attention due to 
their involvement in disease progression from acute kidney 
injury (AKI) to chronic kidney disease (CKD). Studies have 
shown that the inability of macrophages to shift from pro-
inflammatory M1 phenotype to reparative M2 phenotype 
triggers the ongoing renal inflammation and fibrosis [14]. 
Conversely, prolonged presence of M2 macrophages can lead 
to elevated levels of pro-fibrotic cytokines like TGF-β1 and 
excessive ECM deposition. Both M1 and M2 macrophages 
play critical roles in renal fibrosis [15]. Cytokines secreted 
by macrophages stimulate resident renal cells to deposit 
more ECM proteins, causes epithelial to mesenchymal 
transition in podocytes and proximal tubule cells and 
differentiates fibroblasts into myofibroblasts [16-18]. 
Treatment strategies targeting macrophages have shown to 
be effective in mouse models of renal disease highlighting 
the importance of macrophages in disease /progression [6]. 
While M1 macrophages have been detected in all stages of 
kidney disease, M2 macrophages are only present in AKI 
and not in CKD [7]. This makes phenotyping of macrophages 
particularly interesting while evaluating kidney biopsies.

Chronic kidney disease classification and evaluation 
of therapeutic efficiency is based on correlation of clinical 
parameters and traditional histopathological evaluation 
of biopsy tissue. Since immunohistochemistry was limited 
to 2-3 antibodies per tissue section, detailed profiling of 
tissue infiltrating macrophages was not feasible but newer 
proteomic platforms like imaging mass cytometry, facilitate 
the quantification of 35 different protein markers in the 
same tissue section. These allow for better understanding 
the composition, spatial distribution and molecular profile 
of the infiltrating immune cells in tissue biopsy [19]. These 
platforms will aid in better understanding the mechanisms 
of renal disease progression and changes in spatial 
distribution of M1 and M2 macrophages in the kidney during 
different stages of disease. Based on the prevalence of M1/
M2 macrophages in kidney biopsies, therapeutics can be 
targeted to address the underlying inflammation or fibrosis. 
Alternatively, specific therapeutics can be developed to 
balance macrophage polarizations, which might offer better 
management of chronic kidney diseases.
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