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Abstract

Purpose: To investigate the impact of clinical features on model performance in CT-based Non-Small Cell Lung Cancer (NSCLC) 
and the potential uncertainty regarding their application in machine learning.
Methods: Clinical and radiomic features were retrospectively retrieved from EMR and CT images of 496 NSCLC patients. Five 
feature datasets were constructed: radiomic features-only (Rad), clinical features-only (Clin), shape features-only (Shape), 
radiomic and clinical features (RaClin), shape and clinical features (ShClin). Five feature selection methods and seven predictive 
models, along with different cohort sizes, number of input features and validation methods were included for the uncertainty 
analysis, with two-year survival as the study endpoint. AUC values were calculated for comparisons and Kruskal-Wallis testing 
was performed to determine significant differences.
Results: A total of 19740 distinct combinations of feature sets, feature selection methods, predictive models, cohort sizes 
and validation techniques are examined. Of those, 25 combinations produce an AUC > 0.7. The clinical-only feature dataset 
generally outperforms both the radiomic-only feature dataset and the hybrid (clinical and radiomic) feature dataset (P<0.01), 
which is primarily determined by the endpoint. The combination of different feature selection methods and predictive models, 
along with the variations in cohort size, number of input features and validation methods generate inconsistent results.
Conclusion: Clinical features are a source of data that can improve machine learning model performance. However, its impact 
strongly depends on various factors that may lead to inconsistent results. A clear approach to incorporate clinical features to 
generate reliable results requires further investigation.
        
Keywords: Clinical Features; Radiomics; Lung Cancer; Machine Learning

Abbreviations: AUC: Area Under the Curve; ANOVA: 
Analysis of Variance; CV: Cross-Validation; LASSO: Least 
Absolute Shrinkage and Selection Operator; mRMR: 
Maximum Relevance-Minimum Redundancy; MI: Mutual 
Information; NSCLC: Non-Small Cell Lung Cancer; ROI: 
Region of Interest.

Introduction

The use of radiomic features for machine learning 
analysis of clinical images has gained significant attention 
as a non-invasive technique in recent years [1-4]. These 
features can be readily extracted in large quantities from 
datasets of patient images, enabling the quantification of 

https://medwinpublishers.com/CRIJ/
https://portal.issn.org/resource/ISSN/2640-2343
https://medwinpublishers.com/
https://doi.org/10.23880/crij-16000214


Clinical Radiology & Imaging Journal
2

Gary G, et al. The Impact of Clinical Features in Radiomics of CT Non-Small Cell Lung Cancer. Clin Radiol 
Imaging J 2023, 7(2): 000214.

Copyright©  Gary G, et al.

certain expressions within regions of interest (ROI) which 
can be associated with disease or other abnormal structures. 
A wide range of quantitative features can be explored, 
including broadly applicable texture and morphological 
features. While extracting quantitative features from patient 
images is the primary source of data for radiomic studies, 
they are not the only source of relevant data.

Prior studies have incorporated clinical features, also 
known as semantic features, which can provide highly 
relevant data to a machine learning algorithm and potentially 
improve predictive model robustness [5-10]. These features 
are typically documented in patient charts and encompass 
various categories such as demographic information (e.g., 
age, gender, ethnicity), behavioral information (e.g., lifestyle, 
smoking status), and pathohistological information (e.g., 
tumor stage, histology). Clinical features have been explored 
for diagnostic and prognostic purposes, even before the 
advent of machine learning techniques and big data analysis 
[11-17].

Although clinical features have been included as an 
additional source of data in radiomic investigations, the 
impact of clinical features on CT-based non-small cell lung 
cancer (NSCLC) radiomics and the potential uncertainty 
regarding their use remains largely unexplored. To better 
understand this question, we perform a comparative study 
with radiomic features while considering various factors 
that may impact performance such as cohort size, feature 
selection methods and predictive models, the number of 
input features for model training, and model validation 
methods.

Clinical Features Overview

Building on our previous review of CT lung cancer 
radiomics studies [1], we further examined commonly used 
clinical features and their impact on model performance 
compared to radiomic features. A total of 53 studies were 
identified. Each of them included at least one of three 
comparisons: clinical feature dataset vs. radiomic feature 
dataset, clinical feature dataset vs. hybrid feature dataset, 
radiomic feature dataset vs. hybrid feature dataset. Here the 
hybrid feature dataset is referred to as the combination of 
clinical and radiomic features.

Table 1 presents a summary of the most frequently 
selected clinical and radiological features for model training. 
Other refers to features used only once in the reviewed 
studies. Clinical data such as gender, age, smoking status, and 
tumor stage, are often readily available within patient charts 
and easily accessible. Histologic and morphologic features 
were also commonly incorporated, as many of the reviewed 

studies seek to explore specific aspects (e.g., histologic 
classification and metastatic prediction) of lung cancer with 
established associations to these features.

Clinical feature # Occurrences
Gender 20

Age 19
Smoking status 19

Stage 17
Diameter 16

Histologic subtype 13
Location 7

Size/Volume 7
Spiculation 6

Pleural indentation 4
Pleural retraction 4
Air bronchogram 3

Ground-glass opacity 3
Lobulation 3

Shape 3
Solid component 3

Bubble-like 2
Cavitation 2

Emphysema 2
Family history 2

LN status 2
Local lymphadenopathy 2

Margins 2
Mean HU 2

Treatment response 2
Vascular convergence 2

Other 32

Table 1: The most common clinical and radiological features 
for radiomics of NSCLC based on 53 studies reviewed.

The 53 reviewed studies included a total of 68 
independent endpoints, as some studies include multiple 
endpoints. For example, Huyhn, et al. examined model 
performance for two distinct endpoints: distant metastasis 
and local recurrence [18]. This resulted in a total of 154 
comparisons, with 51 for clinical feature dataset vs. radiomic 
feature dataset, 55 for radiomic feature dataset vs. hybrid, 
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and 48 for clinical feature dataset vs. hybrid. Among 51 
comparisons between clinical and radiomic feature datasets, 
only 17 favored the clinical feature dataset. Hybrid feature 
datasets generally outperformed both radiomic feature 
datasets (42 of 55 comparisons favored hybrid) and clinical 
feature datasets (41 of 48 favored hybrids). Overall, these 
findings imply that the combination of radiomic and clinical 
features can generate more reliable results than any of them 
individually. While existing literature shows this relationship, 
there have been no specific efforts to investigate how clinical 
features or the uncertainties associated with the use of 
clinical features influence the performance, which our work 
here will focus on.

Materials and Methods

Clinical Cohort

The study cohort included 496 pre-treatment CT image 
sets from NSCLC patients. The images were retrospectively 
retrieved from Eclipse (Varian, Palo Alto, USA). The cohort is 
summarized in Table 2. All patients were scanned on a GE VCT 
(GE Healthcare, USA) using the same acquisition protocol, 
120kV, collimation of 16 X 0.625mm, and scan FOV of 50 cm 
with Auto mA/Smart mA ‘on’. Filtered Back Projection and 
STANDARD kernel were used to reconstruct images with a 
slice thickness of 2.5mm. Gross tumor volume (GTV) were 
delineated and reviewed by radiation oncologists prior to 
treatment.

Characteristics Number of patients Percentage of patients (%)
n, number of patients 496 NA

Gender
Male 255 51.4

Female 241 48.6
Smoking status

Yes 476 96
No 20 4

Age
30-39 3 0.6
40-49 21 4.2
50-59 90 18.1
60-69 184 37.1
70-79 152 30.6
80-89 45 9.1
90-99 1 0.2

Stage
Occult 1 0.2

IA 170 34.3
IB 81 16.3
IIA 7 1.4
IIB 25 5
IIIA 53 10.7
IIIB 61 12.3
IIIC 6 1.2
IV 62 12.5

IVA 11 2.2
IVB 11 2.2
NA 8 1.6

Survival (months)
<24 237 47.8

>=24 259 52.2
Table 2: Characteristics of the patient cohort.
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Radiomics Features

The GTV contours that were previously delineated 
were exported to IBEX (MD Anderson, Houston, USA) and 
used as the ROI contours for feature extraction [19]. A total 
of 125 radiomic features were extracted. The extracted 
features were categorized as Intensity Direct features 
(n=33), Intensity Histogram features (n=9), 2D and 3D 
Gray Level Co-occurrence features (n=44), Gray Level Run 
Length features (n=11), 2D and 3D Neighbor Intensity 
Difference features (n=10), and Shape features (n=18). No 
preprocessing was applied to the images prior to feature 
extraction. Some features were directionally dependent or 
percentile-based and were calculated separately for each 
direction or percentile, respectively. When counting all 
versions of the extracted features, a total of 1419 radiomic 
features were extracted for each patient image set. The 
extracted radiomic features and feature extraction method 
are also the same as in our previous study [20]. All analysis of 
the radiomic features, feature selection methods, predictive 
model training, and predictive model validation was done 
using Python 3.10 (Python Software Foundation, https://
www.python.org/)

Clinical Features

Electronic medical records (EMR) were retrospectively 
retrieved from the XXXXX (KCR). The EMR data included 
demographic and histopathologic variables, which were 
evaluated for inclusion as clinical features. The demographic 
variables selected for inclusion were: gender, smoking pack 
years, and age at diagnosis. The histopathologic variables 
selected for inclusion were: TNM staging, SEER staging, 

laterality, topography, tumor size, and treatment method. A 
total of 9 clinical features were selected. Smoking pack-years, 
age at diagnosis, and tumor size were included as is. The 
remaining categorical features were assigned integer labels 
so they could be used as ordinal features (e.g., gender: male 
– 0, female – 1, TNM staging: IA – 10, IB – 11, IIA – 20, etc.).

Feature Datasets for Comparison

Both radiomic features and clinical features were 
employed in this study. Three single feature datasets were 
established: Rad, Shape, Clin. The Rad feature dataset 
consisted of radiomic features extracted using IBEX [19], 
including all available first- and second-order radiomic 
features as in our previous work (n=125) [20]. The Shape 
feature dataset was a subset of Rad, including only the 
features within the Shape category (n=18). Morphological 
features have historically played a significant role in in 
clinical decision-making processes, e.g., RECIST, which relies 
on tumor size measurements to evaluate treatment response 
[21]. Moreover, our previous findings indicated that Shape 
features are rarely selected by common feature selection 
methods [20]. By isolating the Shape features, we aimed to 
investigate the morphological features independently from 
other quantitative features in Rad. The Clin feature dataset 
comprised clinical features obtained from patient EMR 
variables (n=9). Additionally, two combined feature datasets 
(RaClin, ShClin) were established: RaClin, which combined 
Rad and Clin, and ShClin, which combined Shape and Clin. 
Given that Shape is a subset of Rad, a separate combined 
feature dataset was deemed unnecessary. Table 3 provides a 
description of the five feature datasets employed in the study.

Feature Set Type Features Total Number of Features
Single feature sets

Rad Radiomic only Intensity Direct (n=33) 125
Intensity Histogram (n=9) (1419 w/ variations)

Gray Level Co-occurrence (n=44)
Gray Level Run Length features (n=11)
Neighbor Intensity Difference (n=10)

Shape features (n=18)
Clin Clinical only Gender 9

Age at Diagnosis
Smoking Pack Years

Topography
Laterality

SEER Stage
Stage
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Tumor size
Treatment

Shape Shape only Shape features (n=18) 18
Combined feature sets

RaClin Radiomic + Clinical 125 + 9
ShClin Shape + Clinical 18 + 9

Table 3: Feature set characteristics.

Feature Selection: Five common feature selection 
methods were employed: analysis of variance (ANOVA), 
least absolute shrinkage and selection operator (LASSO), 
maximum relevance-minimum redundancy (mRMR), mutual 
information (MI), and Relief [1]. Pearson correlation filtering 
was applied to Rad to remove redundant radiomic features, 
using a correlation threshold of 0.95 [22-25]. Pearson 
correlation was not conducted for the Shape and Clin feature 
datasets due to their low number of features. The feature 
selection methods were applied to each of the individual 
feature datasets (Rad, Shape, Clin) to rank features. For Rad, 
the top 25 features were retained after ranking, representing 
a selection at the higher end commonly seen in other 
radiomic studies [1]. The top 15 features were retained for 
Shape after ranking. All features in Clin were retained after 
ranking. Differences in feature rank order for Shape and 
Clin were examined to determine the stability of shape and 
clinical features across feature selection methods. The Rad 
feature dataset had already been examined in our previous 
work [20].

Predictive Model Training

Seven common predictive models were used: Decision 
Tree, Random Forest, Logistic Regression, Support Vector 
Classifier, k-Nearest Neighbor, Gradient Boosting, and 
Naïve-Bayesian [1]. The number of input features used 
to train predictive models was varied depending on the 
feature dataset. For Rad, the top 25 radiomic features were 
retained after feature selection and the top 5, 10, 15, 20, 
and 25 features were used for predictive model training, 
respectively. For Shape, all 15 features retained after feature 
selection were used. For Clin, all 9 features were used. RaClin 
combined Rad and Clin and had 25 combinations of different 
numbers of input features ([5, 10, 15, 20, 25 Rad] x [1, 3, 
5, 7, 9 Clin]). ShClin combined Shape and Clin and had 15 
combinations ([5, 10, 15 Shape] x [1, 3, 5, 7, 9 Clin]). Each 
separate combination was treated as a separate instance 
when training the predictive models. This approach ensured 
that both the radiomic and clinical features were included in 
model training, even if the clinical features have otherwise 
been ranked below the top radiomic features. A 2-, 5-, and 
10-fold cross-validation (CV) were used for predictive model 
validation. These three methods were commonly adopted in 

existing studies [1].

Performance Analysis

The study endpoint for model prediction was two-
year survival. To assess the performance of the predictive 
models, Area under the Curve (AUC) values were calculated. 
Combinations that yielded AUC values greater than 0.7 were 
considered to have fair performance based on established 
criteria [26-28]. The mean AUC value for each variation was 
calculated to examine the relative performance associated 
with different feature datasets. For example, the average 
AUC value of all model outputs using the ANOVA feature 
selection method was calculated for Rad, Shape, Clin, RaClin, 
and ShClin. This process was repeated for each feature 
selection method, predictive model, cohort size, validation 
method, and number of radiomic features. This resulted in 
19740 individual models (5 feature selection methods * 7 
predictive models * 4 cohort sizes * 3 validation methods * 
[5 Rad + 1 Shape + 1 Clin + 25 RaClin + 15 ShClin] number 
of input features) for evaluation. The AUC values for each of 
the feature datasets were grouped into individual boxplots 
to visualize relative performance. Kruskal-Wallis testing 
was performed to determine significant differences across 
all feature datasets and subsequent pairwise analysis 
was performed to determine relative performance of the 
feature datasets. This retrospective study was performed in 
accordance to relevant guidelines and regulations, and was 
approved by the X institutional review board (IRB).

Results

The feature rankings across the feature selection 
methods for the Shape feature are listed in Table 4A. While 
many of the Shape features are ranked inconsistently, the 
features that have the highest average ranks are Orientation, 
Surface Area, Surface Area Density, Volume, Compactness1, 
and Number of Voxel. Other than Orientation, the remaining 
features directly pertain to the physical size of the ROI, 
implying that the ROI shape and orientation may be less 
influential. For the Clin feature dataset, the feature rank 
orders are also inconsistent, as shown in Table 4B. Compared 
to the other feature selection methods, mRMR ranks the Clin 
features in almost a reverse order. The ranks of Smoking 
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Pack Years and Age at Diagnosis indicate the two features 
are highly associated with survival, which aligns with finding 
from previous studies [12-14,29-31]. Our previous findings 
when examining feature rank order for the Rad feature 

dataset show similar inconsistencies to the results found for 
Shape and Clin [20]. It is important to note that the relative 
importance of a given feature, shape, clinical, or radiomic, is 
contingent upon the chosen feature selection method.

Rank ANOVA LASSO MI MRMR RELIEF
1 Compactness1 Sphericity Orientation Compactness1 Number Of Voxel
2 Surface Area Orientation Surface Area Surface Area Density ConvexHullVolume3D
3 Surface Area Density Number Of Objects Volume Surface Area Orientation
4 Convex Hull Volume Volume Sphericity Voxel Size Surface Area
5 Mean Breadth Roundness Voxel Size Mean Breadth Density Convex Hull Volume
6 Max3DDiameter Compactness1 Convex Convex Hull Volume Mass
7 ConvexHullVolume3D Number Of Voxel Roundness Max3Ddiameter Volume
8 Mass Compactness2 Surface Area Density Mass Max3Ddiameter
9 Volume Mean Breadth Number Of Voxel Volume Mean Breadth

10 Number Of Voxel Max3Ddiameter ConvexHullVolume3D ConvexHullVolume3D Number of Objects
11 Voxel Size Mass Convex Hull Volume Number Of Voxel Surface Area Density
12 Roundness ConvexHullVolume3D Mean Breadth Roundness Compactness1
13 Sphericity Convex Hull Volume Number Of Objects Comapctness2 Spherical Disproportion
14 Compactness2 Convex Mass Sphericity Compactness2

15 Spherical 
Disproportion Voxel Size Compactness1 Spherical Disproportion Roundness

Table 4A: Rankings for the Shape feature set using different feature selection methods.

Rank ANOVA LASSO MI MRMR RELIEF
1 Smoking Pack Years Stage Gender Treatment Tumor Size
2 Laterality Age at Diagnosis Age at Diagnosis Gender Smoking Pack Years
3 Age at Diagnosis Smoking Pack Years Smoking Pack Years SEER Stage Age at Diagnosis
4 Topography Topography Topography Tumor Size Treatment
5 SEER Stage Laterality Laterality Stage Gender
6 Stage SEER Stage SEER Stage Topography Laterality
7 Gender Gender Stage Laterality SEER Stage
8 Tumor Size Tumor Size Tumor Size Age at Diagnosis Stage
9 Treatment Treatment Treatment Smoking Pack Years Topography

Table 4B: Rankings for the Clin feature set using different feature selection methods.

Feature
Cohort 

Size (%)
Validation 

Method
Number of Input Features Feature Se-

lection
Predictive 

Model
AUC

Radiomic Shape Clinical
Rad 50 2F 25 - - LASSO GB 0.973
Rad 75 2F 15 - - MI LR 0.872
Clin 25 5F - - 9 MI RF 0.724
Clin 25 5F - - 9 Relief RF 0.721
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Clin 25 5F - - 9 mRMR RF 0.716
Clin 25 5F - - 9 LASSO RF 0.71
Clin 25 10F - - 9 LASSO RF 0.702
Clin 25 5F - - 9 ANOVA RF 0.701

RaClin 25 10F 5 - 7 Relief GB 0.727
RaClin 25 10F 10 - 9 Relief DT 0.717
RaClin 25 10F 10 - 5 mRMR LR 0.713
RaClin 25 10F 5 - 9 Relief GB 0.711
RaClin 25 10F 5 - 5 Relief GB 0.709
RaClin 25 10F 5 - 5 Relief RF 0.707
RaClin 25 10F 5 - 1 mRMR LR 0.706
RaClin 50 2F 25 - 7 mRMR RF 0.704
RaClin 25 5F 5 - 5 Relief RF 0.703
RaClin 25 10F 5 - 7 mRMR LR 0.702
RaClin 25 10F 5 - 9 MI RF 0.702
RaClin 25 10F 5 - 5 mRMR LR 0.7
ShClin 25 10F - 5 7 mRMR DT 0.728
ShClin 25 10F - 5 5 mRMR DT 0.723
ShClin 25 10F - 10 5 mRMR DT 0.715
ShClin 25 10F - 15 5 Relief GB 0.714
ShClin 25 10F - 5 9 MI RF 0.702

Table 5: Combinations of workflow variations with AUC > 0.7.

Table 5 displays the highest performing combinations 
for the five feature datasets (Rad, Clin, RaClin, ShClin, 
Shape), only including combinations with AUC > 0.7. The 
highest performing combination for each feature dataset is 
bolded. Combinations using the Shape feature dataset are 
not included since its maximum AUC is 0.651. In total, there 
are 2 combinations for Rad, 6 for Clin, 12 for RaClin, and 5 
for ShClin in this table. These combinations represent a very 
small percentage of the total tested combinations for each 
feature dataset, specifically 0.09% (2/2100) for Rad, 1.4% 
(6/420) for Clin, 0.11% (12/10500) for RaClin, and 0.07% 
(5/6300) for ShClin. The highest performing combination is 
from Rad (AUC = 0.973) and the second highest performing 
combination is also from Rad (AUC = 0.872), suggesting a 

high level of predictive performance. However, it is important 
to note that these combinations are clear outliers when 
compared to the performance of combinations in Rad, all of 
which have AUC values less than 0.667. Thus, the high AUC 
values obtained may not accurately represent the overall 
performance of the dataset. For each feature dataset in Table 
5, Clin (Max AUC: 0.724), RaClin (Max AUC: 0.727), and ShClin 
(Max AUC: 0.728) all incorporate clinical features and show 
similar max AUC values. All but one combination uses the 
25% patient sub-cohort, and all but one combination uses 
5- or 10-fold CV. The feature selection methods that are most 
commonly used in these combinations are mRMR and Relief, 
with 9 and 8 occurrences, respectively. The predictive model 
that appears most commonly in this table is Random Forest, 
with 11 occurrences.

Category Variation Rad Shape Clin RaClin ShClin

Feature Selection Method

ANOVA 0.582 0.57 0.584 0.587 0.577
LASSO 0.522 0.563 0.583 0.543 0.576

MI 0.553 0.565 0.583 0.553 0.575
mRMR 0.577 0.567 0.584 0.601 0.601
Relief 0.53 0.569 0.586 0.55 0.587
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Predictive Model

Decision Tree 0.538 0.516 0.594 0.558 0.556
Random Forest 0.579 0.58 0.632 0.611 0.608

Logistic Regression 0.565 0.596 0.615 0.571 0.601
SVC 0.541 0.612 0.53 0.544 0.602
KNN 0.534 0.551 0.498 0.543 0.543

GBoost 0.563 0.541 0.621 0.59 0.59
NB 0.55 0.571 0.598 0.551 0.583

Cohort Size (%)

100 0.552 0.537 0.572 0.567 0.591
75 0.55 0.582 0.566 0.564 0.589
50 0.553 0.579 0.593 0.568 0.588
25 0.555 0.57 0.604 0.568 0.565

Validation Method
2 0.549 0.565 0.577 0.56 0.578
5 0.554 0.563 0.586 0.567 0.582

10 0.556 0.572 0.589 0.573 0.59

Number of Radiomic Features

5 0.555 - - 0.568 -
10 0.551 - - 0.569 -
15 0.552 - - 0.568 -
20 0.553 - - 0.564 -
25 0.553 - - 0.565 -

Table 6: Summary of average performance for all tested variations.

Table 6 compiles the relative performance of the 
sources of variation examined in this study. The highest 
performing variation in each category is bolded. In Shape 
and Clin feature datasets, the mean AUC values of the feature 
selection methods exhibit only slight variations. This may be 
attributed to the relatively low number of features in both 
datasets, which may diminish the impact of different feature 
selection methods, leading to similar average performance. 
However, in the larger feature datasets (Rad, RaClin, ShClin), 

the performance differences between the feature selection 
methods are larger. This suggests that the choice of feature 
selection method may have a greater impact on the predictive 
performance in feature datasets with a larger number of 
features. From the bolded mean values in Table 6, it can be 
seen that the feature datasets that include clinical features 
generally outperform those without clinical features. 
Additional analysis is shown in Figure 1 and Table 7. 

Group A Group B Lower CI Mean Upper CI p-value
Rad Shape -2533.3 -1702.4 -871.6 2.26E-07
Rad Clin -4444.9 -3614 -2783.1 0
Rad RaClin -1945.9 -1574.3 -1202.8 0
Rad ShClin -3912 -3520.3 -3128.6 0

Shape Clin -2984.2 -1911.5 -838.9 1.15E-05
Shape RaClin -645.4 128.1 901.6 0.991
Shape ShClin -2601.2 -1817.9 -1034.5 2.36E-09

Clin RaClin 1266.1 2039.6 2813.2 5.28E-12
Clin ShClin -689.7 93.7 877 0.998

RaClin ShClin -2193.7 -1946 -1698.2 0

Table 7: Pairwise evaluation of the performance of each feature set.
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The boxplot in Figure 1 shows all AUC values for each 
of the feature datasets. Kruskal-Wallis analysis shows 
significant difference across all feature datasets (p = 3.16e-
171). Further pairwise testing in Table 7 shows the relative 
performance of each feature dataset. The feature datasets 

are ranked as follows: (Clin and ShClin) > (Shape and RaClin) 
> Rad. There is no significant difference between the Shape 
and RaClin feature datasets as well as the Clin and ShClin 
feature datasets.

Figure 1: Box plots for AUC values of each of the feature sets. Kruskal-Wallis analysis shows significant difference in the group.

Discussion

In general, our results agree that the inclusion of 
clinical features improve model performance. However, 
contrary to existing studies, our results show the clinical-
only feature dataset outperformed both the radiomic-
only feature dataset and the hybrid feature dataset. The 
selection of endpoints could be a primary source behind 
this disagreement. Based on above mentioned 53 reviewed 
studies, there are basically three types of endpoints: 
histological classification (e.g., mutation status, malignancy 
classification), metastatic prediction (e.g., lymph node 
status, distant metastasis), and survival prediction (e.g., 
progression-free survival, treatment response). For the 
metastatic prediction endpoint, 31 of 33 comparisons show 
a consistent conclusion that both radiomic and hybrid 
feature datasets outperform clinical feature datasets. For the 
40 comparisons with survival prediction as the endpoint, 
approximately 35% of comparisons favor the clinical feature 
dataset over the radiomic or hybrid feature datasets. For 
the 82 comparisons with histological classification as the 
endpoint, approximately 30% of comparisons the favor 
clinical feature dataset over the radiomic or hybrid feature 
datasets. This indicates that the impact of clinical features 
depends on the selection of endpoint. Note that this study 
uses the two-year survival as endpoint, which belongs to the 

category of survival prediction.

Another reason for this disagreement may be due to 
the variation of various factors associated with radiomics 
studies, such as cohort size, feature selection methods, 
number of input features, selection of predictive models, 
and validation methods. Our previous study has shown the 
variations in these factors generate inconsistent results, 
leading to inconsistent conclusions [20]. It is worth noting 
that a radiomics study typically intends to design and train 
the best possible model. While various combinations of 
factors may be tested, only the best performance is typically 
reported. This is of course relevant to the study goals but may 
not reflect the overall influence of various factors on model 
performance. We examined 19740 distinct combinations 
of feature datasets, feature selection methods, predictive 
models, cohort variations, and validation techniques. Of 
these, only 25 combinations produced an AUC > 0.7 as seen 
in Table 5, highlighting the challenge of designing a high 
performing predictive model. The factors that researchers 
have the most control over feature selection, number of input 
features, and predictive model, exhibit limited agreement in 
these combinations. Validation method is consistent, most 
combinations use 10-fold CV, but this method is considered 
standard which leaves little room for adjustment [1]. The 
other factor that displays consistency is cohort size, which is 
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not controllable in most scenarios. This shows that there is no 
clear way to combine clinical features with radiomic features 
and other factors to generate consistent, high-performing 
models. The wide availability of different machine learning 
methods and constantly-evolving techniques poses a difficult 
challenge when preparing studies, especially if studies do 
not plan to implement wide-ranging test arrays as we have.

There are several limitations to this study. The clinical 
features retrieved from the KCR are limited in number, 
though still comparable to other studies and include most 
commonly used features in Table 1. The number of methods 
included in this study may be another limitation. We chose 
the most popular/frequently used methods based on our 
review of literature since 2012 in CT lung cancer studies 
[1]. There are other methods that are not included in this 
study that may be investigated in the future. The radiomic 
features for comparison could be a limitation as well, since 
only first and second order radiomic features are employed. 
High-order features such as wavelets and Laws features may 
improve the performance with radiomic features.

Conclusion

Incorporating relevant clinical features alongside 
radiomic features can have a positive impact on model 
performance, as the combination of both types of features 
generally outperforms using clinical or radiomic features 
alone. However, clinical features are just as susceptible as 
radiomic features to the same inconsistencies associated 
with variations in the radiomic workflow and further 
investigations are needed to improve their implementation 
with the goal of producing robust radiomic models.
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