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Abstract 

Hyperglycemia is a primary cause of endothelial dysfunction in diabetes. Modification of the cellular environment by 

carbonic anhydrate inhibitors favors generation of Nitric oxide, which causes relaxation of the vascular endothelium. 

Endothelial dysfunction contributes to the development of diabetes associated micro vascular and macro vascular 

complications, which are the main cause of morbidity and mortality. 
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Introduction     

     Diabetes can be defined as a complex metabolic 
condition characterized by impairment of glucose 
regulating pathways, resulting in sustained endogenous 
glucose production. Advances in understanding the 
vascular pathology of diabetes have made it clear that the 
pathogenesis of diabetic vascular complications is 
determined by a balance between molecular mechanisms 
of injury and endogenous protective factors [1].  
 
    Hyperglycemia has been reported to be a mediator of 
endothelial dysfunction and is involved in several 
intracellular pathways associated with vascular 
complications, which are the major cause of morbidity 
and mortality in diabetes mellitus [2].  
 
    The development of long-term complications in 
diabetes is influenced by hyperglycemia. Poor control of 
hyperglycemia accelerates its progression. The resulting 
chronic hyperglycemic condition in diabetes is associated 
with macro and micro vascular complications. Macro 
vascular complications are involved in the development of 
heart disease and cerebrovascular disease, which account 
for much of the reduction in life expectancy experienced 

by patients with diabetes mellitus. Micro vascular 
complications in patients with diabetes mellitus manifest 
as nephropathy, neuropathy and retinopathy, which also 
contribute to the morbidity burden [3]. Poor control of 
hyperglycemia is not the only risk factor for diabetic 
complications: genetic pre-disposition, dyslipidemia and 
hypertension are also important [4-6]. The alterations in 
cellular homeostasis and regulation of vascular 
physiology may lead to vascular complications. 
 
     Hyperglycemia contributes to the development of 
vascular complications through several mechanisms: 
activation of the polyol and hexosamine pathways, 
activation of diacylglycerol (DAG)-protein kinase C (PKC), 
increased oxidative stress, increased production of 
advanced glycation end-products, increased synthesis of 
growth factors, cytokines, and angiotensin II [7]. These 
factors can, in turn, induce a diffuse endothelial 
dysfunction and contribute to the progressive 
development of micro- and macrovascular complications 
and multiorgan damage [8]. Among the number of factors 
involved in maintaining proper vascular wall homeostasis 
is nitric oxide (NO) which is of pivotal relevance in 
guaranteeing physiological endothelial function [9]. In 
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fact, impaired NO synthesis and/or availability results in 
endothelial dysfunction [10], thus promoting the 
development of vascular damage. Although it has been 
demonstrated that diabetes is associated with endothelial 
dysfunction, and it is known that endothelium-dependent 
vasodilation is significantly impaired in diabetic patients. 
 
     It was reported that hyperglycemia significantly 
attenuated the production of NO in response to increasing 
glucose concentration. Likewise, insulin-stimulated NO 
production was greatly reduced in hyperglycemic 
conditions. Similar results were obtained using neurons 
from streptozotocin-induced diabetic rats and from non-
diabetic rats cultured in hyperglycemic conditions, 
affirming that high glucose was responsible for the 
decreased production of NO, rather than other diabetes-
associated pathologies [11]. The impairment has been 
linked to numerous circulatory derangements in diabetes, 
including increased capillary permeability [12], enhanced 
platelet aggregation [13], and accelerated progression of 
diabetic nephropathy [14]. Loss of endothelial-dependent 
vasodilator capacity is mediated to a great extent by nitric 
oxide (NO), which may cause excessive vasoconstriction 
in some vascular beds [15-18]. It was reported that in 
isolated blood vessels exposure to elevated glucose 
causes endothelial dysfunction [19,20]. 
 

The Role of Carbonic Anhydrase in 
Endothelial Dysfunction 

     Biological control of cellular and extracellular fluid pH 
is highly important for all aspects of metabolism and 
cellular activities. The organism's first line of defense 
against changes in internal pH is provided by buffer 
systems. Three important systems include the 
bicarbonate, phosphate, and ammonia buffer systems 
[21]. The hydration of carbon dioxide occurs too slowly 
without catalysis. Thus, the carbonic anhydrase enzyme 
family evolved to catalyze a reaction in which carbon 
dioxide is hydrated to form a proton and bicarbonate 
[21,22]. 
 
 
              CO2 + H2O              H2CO3              H+ + HCO3

- 

 
 
      Multiple is forms have been discovered in plant and 
animal tissues where it is believed to facilitate the 
transport of carbon dioxide. Carbonic anhydrase II has the 
highest molecular turnover number of any known 
enzyme. One molecule of carbonic anhydrase can hydrate 
36,000,000 molecules of carbon dioxide in a period of 60 

seconds [23]. Carbonic anhydrase are involved in diverse 
physiological functions including pH regulation, ion 
transport, bone resorption and secretion of gastric, 
cerebrospinal fluid and pancreatic juices [24]. 
Carbonic anhydrase inhibitors (CAIs) have been shown to 
have a vasodilating effect on the blood vessels in the 
retina and the optic nerve from animals both in vitro [25] 
and in vivo [26], and in the human retina in vivo [27], an 
effect that has been shown to be independent of NO [28]. 
CA is expressed in a wide range of cell types, including 
capillary endothelial cells, glial cells, and erythrocytes, 
and is soluble, intracellular, extracellular, or membrane 
bound [29,30]. The most active iso form CAII has a wide 
tissue distribution and is also the second most abundant 
protein in red blood cells. Modin et al. [31] were the first 
to demonstrate in a seminal paper that physiological 
nitrite levels induce NO-dependent aortic vasodilation, 
particularly at acidic pH and independently of NOS 
activity. Aamand et al. [32] revealed a novel nitrous 
anhydrase enzymatic activity of CA that would function to 
link the in vivo main end products of energy metabolism 
(CO2/H+) to the generation of vasoactive NO, termed CA-
mediated NO production. Having being one of the fastest 
enzymes known [33] CA in red blood cells is able to 
generate a local decrease in pH due to CO2 hydration in 
the short transit time (<0.5 s) [34] of blood in the 
capillaries of active tissues. This local acidosis decreases 
the O2 affinity of the hemoglobin through the Bohr effect, 
so that more O2 is unloaded to active tissues at a constant 
O2 tension [35-37]. This decrease in pH is what probably 
favours the production and diffusion of NO into tissues. 
Zweier et al. [38] earlier reported that NO may be 
produced non-enzymatically from nitrite at low pH (< pH 
5). This further confirms the role of carbonic anhydrase in 
endothelial function. 
 

Conclusion 

     It is clear that CA inhibitors play a very important role 
in endothelial dysfunction by creating local acidotic 
environment that favors generation of NO. The NO 
increase observed in the presence of carbonic anhydrase 
inhibitors may be particularly active in blood, and may 
participate in intrinsic mechanisms of nitrite-induced 
vasodilation. The present review shows the potential of 
therapeutic applications of carbonic anhydrase inhibitors 
in reversing the course of endothelial dysfunction. 
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