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Abstract 

The role of nonenzymatic glycation and advanced glycation end products (AGEs) in the progression of complications in 

diabetes patients has been explored to add knowledge in present spectrum. However, the association between highly 

reactive carbonyl adducts and diabetic complications are still unclear. The Maillard chemical reaction between 

carbohydrates and reactive amino groups of proteins is the key link between chemistry and biology. The chemistry of the 

glycation alters and impairs the RAGE expression via formation of carbonyl adducts. Excessive generation of non-

enzymatic glycosylated products appears to be the connecting link between chronic hyperglycemia and pathophysiology 

of micro- and macro-vascular complications in diabetes mellitus. 
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Introduction 

     Glycation, also known as non-enzymatic browning or 
the Maillard reactions, has centered the mind of a 
worldwide scientist nearly a century before. By initiating 
the non-enzymatic condensation and addition of reducing 
sugars with protein and being considered to be one of the 
severe forms of protein damage in the field of medicine 
and food science. Named after the pioneering biologist, 
the Maillard reaction was stated in 1912. The 
transformations occurring due to Maillard reaction are 
diverse and complex, despite thorough research, still 
poorly understood. The early research of Louis Camille 
Maillard states the theoretical background of the 
reactions which showed the interest of various food 
scientists in this pioneer era. Further reaction was 
described in detail by John E. Hodge proposing three-
stage mechanism (1) reaction of carbonyl group of sugar 

with amino residues of protein to form an unstable Schiff 
base (2) the Schiff base undergoes rearrangement and 
condensation via Amadori mediated reaction creating a 
first stable product, ketamine [1,2,] and (3) ketamine 
undergoes further rearrangements, polymerization, and 
condensations leading to the formation of advanced 
glycation end products (AGEs) [3]. 
 
     Advanced glycation end products (AGEs) are 
synthesized endogenously upon the reaction of carbonyl 
groups of reducing sugars with free amino groups of 
proteins. AGEs are generated in-vivo as normal 
consequences of metabolism but accelerate under 
adverse conditions of hyperglycemia, hyperlipidemia, and 
oxidative stress. Reducing sugars such as glucose actively 
react non-enzymatically with amino groups in proteins, 
lipids, and nucleic acids via Schiff base Amadori 
rearrangement to form AGEs. AGE formation involves a 
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diverse and complex sequential biochemical reaction, 
whose mechanism is still debated even though the 
pathways of AGE generation are well established. 
Advanced glycation end products formed and occur over a 
period of weeks, thereby affecting biomolecules 
adversely. The structural composition of connective 
tissues, basement membrane, such as collagen, albumin, 
other biomolecules is also the target of AGEs [3,4]. 
Glucose has reported the slowest glycation rate compared 
to intracellular sugars such as glucose-6-phosphate and 
fructose [5]. Pentosidine and N-carboxymethyl-lysine 
(CML) are oxidation products formed via glycoxidation 
mechanism [5]. Amadori rearrangement in Maillard 
reaction includes the formation of reactive intermediate 
known as α-dicarbonyls or oxoaldehydes such as 3-
deoxygluosone (3-DG) and methylglyoxal (MGO) [5-7]. 
Non-oxidative rearrangement and hydrolysis of Amadori 
adduct forms 3-DG along with fructose-3-phosphate via 
polyol pathway [8,9]. Methylglyoxal is also formed from 
the oxidative decomposition of polyunsaturated fatty 
acids [10] and non-oxidative anaerobic glycolysis [11]. 
The accumulation and deposition of reactive di-carbonyl 
precursors of glycoxidation are termed as carbonyl stress 
[12,13]. The carbonyl comes from the accumulation of 
carbonyl precursors whether they enter into the 
formation of oxidative AGE such as CML and pentosidine 
or non -oxidative AGE via 3-DG {deoxyglucasone-lysine 
dimmer (DOLD)} or MGO [methyl glyoxal lysine dimmer 
(MOLD)] [14]. The structure of some AGE has been 
identified and characterized including CML, pentosidine, 
and praline. The well characterized AGE is 
immunologically distinct and coexists with several 
essential proteins such as albumin, hemoglobin, lens 
crystalline along with cholesterol [15]. It has been 
reported that 90 % of pentosidine and CML are albumin-
bound AGE and only 10 % are in free form in circulation 
[16].  
 
     Apart from endogenous AGEs formed inside the body, 
AGEs, and their respective precursors are also taken from 
outside source known as exogenous AGEs. The exogenous 
AGEs sources include cigarette smoking and high heat 
cooked foods. Browning and excessive heating of cooked 
foods enhance its flavor, color, and aroma, but it also 
accelerates the generation of AGEs via Maillard reaction 
[17]. However, excessive AGEs are generated in foods 
exposed to dry heat (grilling, frying, roasting, baking and 
barbecuing) for a period of a long time [18]. The process 
of curing tobacco leaves readily enhances in-vivo AGEs 
formation. A literature reported glycotoxins by cigarette 
smoking transmit into alveoli, transported into the blood 
stream where they interact with circulating glycation 
product to enhance the AGEs formation [19]. Heat 
treatment improves food safety, bioavailability, and taste, 

but in addition to these useful effects, overheating of 
foods also provokes degradation of proteins and essential 
nutrients and gave birth to deteriorative reactions [20]. 
The growing evidence reflects that average Western diet 
pattern is plentiful of exogenous AGEs supply. The 
content of AGEs depends on the nutrient composition and 
way of food processing [21,22]. Previous findings were 
demonstrated with AGE-specific ELISA and estimated that 
around 10% of ingested exogenous immunoreactive AGEs 
are persisting in the circulation, among them, two-third 
remain in the body incorporated covalently into tissues, 
while only one-third is excreted via the kidneys [23]. 
 
     However, a controversy is there about the 
deterioration effect of dietary AGEs to human health due 
to lack of characterization of heterogeneous AGEs class. In 
food science, the product of the last reaction is known as 
melanoidin [24]. As previously reported that regardless of 
AGEs diversity, carboxymethyl lysine (CML) has been 
reported as major in-vivo and also one of the AGEs 
characterized in foods (milk and milk products) therefore 
CML is chosen as an Ages marker in various studies 
related to foods and in-vivo [25]. Studies on the adverse 
effects of AGEs from food are not only restricted to CML, 
but melanoidins are also the main culprit in the bakery 
and coffee industry. A literature describes that 
melanoidins increased anaerobes, clostridia, and 
bifidobacteria [26]. Supplementation of malt and bread 
crust to the rats’ diet increased the glutathione-S-
transferase (GST) activity by 18% and UDP-GT by 27%, 
thus concluding that diet malt and dietary bread crust 
show chemopreventive enzyme activity in rats [27]. 
Besides the formation of endogenous AGEs, dietary AGEs 
have also represented RAGE ligand activity and initiate 
major signal transduction pathways in vitro [28,29]. 
Endogenous in combination with dietary AGEs promote a 
glycoxidant burden, oxidant stress and cell activation 
[30,31]. 
 
     Previously published literatures have focussed on 
explaining the absorption, metabolism, and excretion of 
dietary exogenous AGEs. The phenomenon of intestinal 
absorption of AGEs is not yet well explained. A recent 
literature reported that proline is absorbed by peptide 
transporter known as hPEPT1 [32]. The level of serum 
AGEs depends on their endogenous production, an 
exogenous source of intake and renal enzymatic 
clearance, which plays an important role in the existence 
and removal of serum AGEs levels. Enzymes like 
glyoxalase I, II and carbonyl reductase, receptor (AGER1) 
have been found in detoxification and counter-regulation 
mechanism against president adverse effects of glycation 
[33,34]. Renal excretion effectively eliminates the excess 
of endogenous and exogenous AGEs. 
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Advanced glycation end products and 
complications of Diabetes Mellitus 

     The pathogenesis of diabetes-associated complications 
is the prime issue in current diabetes research [35]. One 
of the most prevalent metabolic syndromes worldwide is 
diabetes mellitus, proving an endemic to the global 
population. It is characterized by persistent hypoglycemia 
resulting in an alteration in metabolic pathways and 
homeostasis of lipids, proteins, and nucleic acids. These 
changes have widely contributed to the progression of 
diabetes-associated macro and micro-vascular 
complications in diabetes mellitus. The prolonged 
hyperglycemia initiates a devastating change in protein 
modifications that termed as glycation resulting in the 
formation of advanced glycation end products (AGEs) via 
Amadori mediated Maillard reaction. AGEs are a 
heterogeneous class of diverse and complex structures 
often unstable, highly reactive formed excessively during 
diabetes mellitus [36]. As stated by glaciation hypothesis 
deposition of AGEs alters the structural and functional 
characteristics of tissues proteins and homeostasis 
[37,38]. It has been reported that AGE formation is 
accelerated by hyperglycemia [39]. Some protein 
modifications observed in diabetes mellitus patients 
resemble those with older non-diabetic patients [40]. 
High quantity of pentosidine has been reported in 
patients with diabetes mellitus [41]. Inhibition of AGE-
mediated cell injury has been proposed as a key element 
in the prevention of diabetes associated complication 
onsets [42]. With the time span, wide research was 
performed to understand the mechanism of AGEs related 
studies. 
 
     AGEs formation and protein glycation induced the 
combinatorial effect in the foster free radical generation 
mechanism that majorly contributes to Biomolecular 
damage in diabetes mellitus [37,43,44]. The literatures 
reflect that AGEs contribute to chemical and physical 
changes in human skin collagen in diabetes patients [45]. 
AGEs Crosslink’s formation in collagen contributes to 
diabetic circulatory complications like stiffening of blood 
vessels and myocardial dysfunction [46]. Although the 
unifying mechanism of development of diabetes 
complications via AGEs mediated is not well established, 
the only culprit is the hyperglycemia that plays important 
role in progression of retinopathy, nephropathy, 
neuropathy and stiffness in joints [47,48]. Literature 
reported that reduced clearance rate enhances the level of 
serum and tissues AGEs in end-stage renal disease [37]. 
In-vitro and In-vivo studies also reported that AGEs 

results in irreversible cross-links formation in type IV 
collagen, laminin, and fibronectin [37]. 
 
     The biochemistry of AGEs is implicated in the 
pathogenesis of diabetes mellitus associated long-term 
complications [49,50]. Hyperglycemia-induced tissue 
damage leads to irreversible changes. Intracellular 
hyperglycemia results in increased flux via diverse 
metabolic pathways enable impairment in glomerular 
basement membrane. Polyol pathway activation results in 
a decrease in NADPH, glutathione, and myoinositol level 
[51]. A prime consequence of hyperglycemia is enhanced 
non-enzymatic glycosylation of proteins leading to 
structural and functional impairments [52]. An elevated 
level of glycation adducts such as praline, pentosidine, 
and CML found to be increased in diabetic patients [52].  
 
     The pathogenesis of progression of diabetes-induced 
complications initiates with the binding of AGEs with 
their receptors. Several receptors of AGEs have been 
found, one of which known as RAGE that is well 
characterized and initiate the intracellular signaling 
disrupting cellular functions. RAGE is a member of the 
immunoglobulin super family of receptors [53,54]. 
Chromosome 6 of major histocompatibility complex 
located between class II and class III is responsible for 
human RAGE expression [55]. RAGE promoter sequences 
comprise of nuclear factor-β (NF-к β), an interferon 
response element and IL-6 DNA binding motifs [56]. 
RAGE has 332 amino acid residues comprising of 2 “C” 
type domains preceded by 1 “V” type domains similarly 
like immunoglobulin followed by single transmembrane 
domain with 43-amino acid highly charged cytosolic tail 
[57]. The variable “V” domain N-terminus is the site for 
ligand binding whilst the cytosolic tail initiates the critical 
RAGE intracellular signaling [58]. 
 
     RAGE may be complexed with other polypeptides like 
lactoferrin-L (LF-L) that shows noncovalent binding with 
AGEs to the extracellular domain [58]. RAGE upregulation 
occurs on binding with AGE initiating positive feedback 
activation on endothelial cells, smooth muscle cells along 
with mononuclear phagocytes in diabetes vasculature 
[57,59]. In diabetes complications RAGE binds to CML 
adduct and hydroimidazolones [60]. Other receptors like 
AGE-R1 (oligosaccharyl transferase-48) ,AGE-R2 (80K-H 
phosphoprotein) and AGE-R3 (galectin-3) along with 
macrophage scavenger receptor type I and II of class A 
have the ability to recognize and bind with AGE legends to 
transducer intracellular signaling cascade. The RAGE is 
widely distributed over the tissues that show adverse 
response over AGEs binding (Table 1). 

  
 



Diabetes and Obesity International Journal 
 

 

Raghav A, et al. Non-Enzymatic Glycation: A Link between Chemistry and 
Biology. Diabetes Obes Int J 2016, 1(3): 000138. 

                      Copyright© Raghav A, et al. 

 

4 

Tissues 
No. of 

RAGE 
Tissues 

No. of 

RAGE 

Adipose Tissue 0 Liver 0 

Adrenal Gland 0 Lung 144 

Ascites 0 Lymph 0 

Bladder 0 Lymph node 32 

Blood 0 Mammary Gland 12 

Bone 0 Mouth 0 

Bone marrow 0 Muscles 0 

Brain 0 Nerve 0 

Cervix 0 Oesophagus 0 

Connective tissue 26 Ovary 9 

Ear 61 Pancreas 9 

Embryonic tissue 4 Parathyroid 0 

Heart 33 Pharnyx 0 

Intestine 4 Pituitary gland 0 

Larynx 0 Placenta 0 

Prostate 10 Spleen 0 

Salivary gland 0 Stomach 12 

Skin 0 Testis 6 

Thymus 12 Tonsil 0 

Thyroid 0 Umbilical Cord 0 

Table 1: Tissue distribution of RAGE expression. 
 
     The AGE-R1 receptor is type 1 single transmembrane 
protein with a small extracellular N-terminal domain 
along with cytoplasmic C-terminal domain [61]. AGE-R2, a 
tyrosine phosphorylated domain, with a size of 80-90 
code located in the plasma membrane of cell severely 
involves in intracellular signaling of fibroblast growth 
factor receptor [62]. AGE-R3, C-terminus, highly binds to 
AGE ligands to initiate intracellular signaling [63]. CD36, 
class B type I along with two class B scavenger receptors 
have been also reported to bind with AGEs. A literature 
supported the expression of LOX-1 (lectin-like oxidized 
LDL receptor-1), a class E receptors upon binding with 
AGEs in diabetic rats [64,65]. The General phenomenon of 
AGEs induced diabetic complications includes (1) 
generation of cross-links among basement membrane of 
extracellular matrix (2) association of AGEs with RAGE on 
the cell surface. AGEs can impair characteristics of 
collagen, vitronectin, and laminin [66]. Non-enzymatic 

glycation initiates the synthesis of collagen type III, IV, V, 
VI, laminin and fibronectin in the extracellular matrix 
through upregulation of TGF [67-69]. Modification of 
laminin and type I, IV collagens upon glycation restrict the 
adhesion to endothelial cells for glycoproteins and matrix 
too [70]. Circulating AGEs in association with endothelial 
RAGEs leads to upregulation of transcription factor NF-кβ 
thereby inducing various cytokines and proinflammatory 
cytokines expression along with various endothelial 
factors [71]. Binding of AGEs to RAGE upregulate the 
expression of NAD (P) H oxidase, MAPKs, p21 ras along 
with kinase 1, p38, GTPases Cdc42 and Rac activating NF-
кβ thereby initiating a cascade of complications [72-75]. 
Endogenously AGEs-albumin complex interact with vessel 
via the RAGE-mediated pathway, triggers the activation of 
NF-кβ [76], TNF-α, IL-1 [76] and IL-6 mRNA expression 
[76]. Some AGEs have been reported to alter the 
basement structure and functions [76]. In human kidney, 
podocytes were expressed for RAGE and cause several 
complications along with tubular epithelia. Literature has 
reported that increase in AGE fluorescence was found in 
hypoglycemic and hyperlipidemic mice. In diabetic 
retinopathy, RAGE-ligand complex was amplified within 
the retina along with a vitreoretinal interface [76].  
 

Falsely elevated glycated adduct in 
diabetes patients 

     Sometimes the patients’ encounters falsely elevated 
HbA1c levels. Several factors that affect the life span of 
erythrocyte may falsely give the glycation status in 
diabetes patients. Studies have done describing that iron 
deficiency may lower the levels of glycated HbA1c [77]. 
Similarly other factors including Asplenia, Uremia, Severe 
hypertriglyceridemia, Severe hyperbilirubinemia, Chronic 
alcohol consumption, Chronic salicylate ingestion, Chronic 
opioid ingestio, Lead poisoning, Anemia from acute or 
chronic blood loss, Splenomegaly, Pregnancy, Vitamin E 
ingestion, Ribavirin and interferon-alpha, Red blood cell 
transfusion, Hemoglobin variants, Vitamin C ingestion 
[78]. The all mentioned factors severely affect the level of 
glycated HbA1c and give false readings in patients with 
diabetes mellitus. 
 

Conclusion 

     In conclusion, there is well and published evidence of 
the existence of AGEs in diabetes and its associated 
complications. Animal and several In-vitro studies have 
demonstrated that AGEs adversely affect the cellular 
signaling via RAGE-mediated mechanisms. A number of 
RAGEs need to be characterized to precisely describe the 
indulgement in the progression of complications of 
diabetes mellitus. The present review proves to be 
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connecting link between the chemistry of the Maillard 
reaction and biology of RAGE expression. 
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