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 Abstract 

Background/Aim: Recent research has focused on identifying new therapeutic targets and novel pathways for 

correcting impaired glucose homeostasis in type 2 diabetes (T2DM). The dipeptidyl peptidase-4 (DPP-4) inhibitor, 

sitagliptin contributes to suppression of postprandial hyperglycemia and diminishes risk of hypoglycemia through 

increasing the level of glucagon-like polypeptide. This study was conducted to assess the effect of sitagliptin on β-cell and 

endothelial functions in Egyptian patients with newly diagnosed T2DM. 

Methods: The study enrolled 40 patients with newly diagnosed T2DM and 40 controls matched for age and sex. 

Anthropometric measurements, plasma glucose, lipid profile, LFTs, HOMA-IR, HOMA-β, amylase, lipase and flow 

mediated dilatation (FMD) were assessed. Patients with T2DM were evaluated before and after treatment with 100 mg 

daily sitagliptin for 24 weeks. 

Results: Sitagliptin significantly reduced blood pressure, FPG, 2 h PPG, HbA1c, ALT, TGs, TC, LDL and HOMA-IR, whereas 

insulin, HOMA-β and FMD were significantly increased. Δ FMD was negatively correlated with Δ SBP, Δ FBG, Δ 2 h PPG, Δ 

HbA1c, Δ insulin, Δ TC, Δ TGs, Δ LDL, Δ HOMA-IR and positively correlated with Δ HOMA-β. With multivariate linear 

regression analysis, ΔTGs (B = – 0.140, P = 0.03), Δ LDL (B = – 0.158, P = 0.02), Δ HOMA-IR (B = – 0.904, P = 0.02) were 

independent predictors of Δ FMD after adjustment of Δ SBP, ΔTC. 

Conclusion: Sitagliptin monotherapy is effective not only on glycaemic control and insulin sensitivity but, also it 

ameliorates endothelial dysfunction, blood pressure and dyslipidemia in newly diagnosed T2DM.  
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Introduction 

     Type 2 diabetes mellitus (T2DM) is a complex 
metabolic disease attributed to genetic and 
environmental susceptibility. Insulin resistance and β-cell 
dysfunction are both responsible for pathogenesis of 
T2DM [1]. Endothelial dysfunction is a key event in the 
pathogenesis of diabetic micro and macrovasculopathy 
and has gained increasing attention in the study of 
diabetes associated cardiovascular complications [2]. The 
hallmark of endothelial dysfunction is the impaired nitric 
oxide (NO) bioavailability due to reduced production by 
NO synthase (eNOS), increased breakdown by reactive 
oxygen species (ROS), or both [3]. The contributing 
factors underlying impaired endothelial function in 
diabetes are varied and commonly include metabolic 
abnormalities such as hyperglycemia, excess liberation of 
free fatty acids (FFAs) and insulin resistance [4]. 
 
     Several pharmacological agents that target either the 
relative insulin deficiency or insulin resistance in patients 
with T2DM are available. However, these agents have 
several limitations, such as less optimal control of 
postprandial hyperglycemia, increased risk of 
hypoglycemia, weight gain, gastrointestinal side effects 
and oedema [5]. Recent research has focused on 
identifying new therapeutic targets and novel pathways 
for correcting impaired glucose homeostasis [6]. The 
development of incretin mimetic and incretin enhancer 
drugs represent a promising therapeutic tool to achieve 
treatment goals, considering that people with T2DM have 
a significant decrease of incretin effect. Glucagon like 
peptide-1 (GLP-1), a prominent active compound of the 
incretin family, modulates many processes in pancreatic 
islet. It potentiates insulin synthesis and secretion, 
inhibits glucagon secretion, increases islet cell 
proliferation, decreases β-cell apoptosis, and also slows 
down gastric emptying [7].  
 
     Recently, Dipeptidyl-peptidase 4 (DPP-4) inhibitors; 
prevent the inactivation of incretins and increasing the 
endogenous active incretin levels; have attracted more 
and more attention, several of which have entered pre-
clinical and clinical trials, and have received approval for 
use as an anti-diabetic agent. Sitagliptin was the first DPP-
4 inhibitor approved by the FDA. It is a potent, highly 
selective DPP-4 inhibitor, had a neutral effect on body 
weight, and contributes to suppression of postprandial 
hyperglycemia and to diminishes risk of hypoglycemia 
[8]. It leads to increases in insulin and C-peptide, 
reduction in glucagon, improvement in oral glucose 
tolerance and improvement in β-cell function and/or 
neogenesis [9]. GLP receptors are also located in 

myocardial, vascular endothelial and smooth muscle cells; 
GLP-1 induces improvements in the cardiac function, as 
well providing cardioprotective effects through the 
elevation of cyclic adenosine monophosphate (cAMP) 
levels, thus leading to a significant regression of 
arteriosclerotic lesions [10]. So, sitagliptin is expected to 
improve the endothelial dysfunction. 
 
     The aim of this study was to assess the effect of 
sitagliptin on β-cell function, endothelial function and 
some metabolic parameters in Egyptian patients with 
newly diagnosed T2DM. 
 

Subjects and Methods 

     This prospective study was included 40 patients (20 
men and 20 women) with newly diagnosed T2DM; not 
controlled on life style management including diet and 
exercise; recruited from Outpatient Diabetes Clinic at 
Mansoura Specialized Medical Hospital. Those patients 
were evaluated before and after treatment with 100 mg 
once daily sitagliptin for 24 weeks. Also, 40 healthy 
subjects matched for age and sex were evaluated as 
controls. The study approved by the local ethical 
committee of institutional review board in Mansoura 
Faculty of Medicine, Internal Medicine Department. All 
participants signed an informed consent. 
 
     All participants were subjected to thorough medical 
history and clinical examination. Anthropometric 
measurements were obtained using standardized 
techniques; height was measured to the nearest 0.5 cm, 
body weight was measured to the nearest 0.1 kg, body 
mass index (BMI) was calculated as weight/height2 

(kg/m2) and waist circumference (WC) was measured at 
the highest point of the iliac crest. Blood pressure was 
measured twice in the sitting position after 10 min of rest 
using a random-zero sphygmomanometer and the 
average of the 2 measurements were used in the analysis. 
 
     The criteria for exclusion were type 1 diabetes, 
secondary diabetes, poorly controlled diabetes (HbA1c 
>10%, fasting blood glucose level < 300 mg/dl), 
microvascular and macrovascular diseases, hypertension 
or the use of antihypertensive medications, acute or 
chronic renal failure, persistently elevated liver 
enzymes>3 folds, connective tissue disorders, 
malignancies, pregnancy, women taking birth control pills 
or hormone replacement therapy and smoking. We also 
excluded subjects who were drugs known to influence 
endothelial function i.e. antioxidants, aspirin, lipid 
lowering drugs. 
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Laboratory assay 

     The laboratory data including albumin, total bilirubin, 
aspartate transaminase (AST) and alanine transaminase 
(ALT), fasting plasma glucose (FPG), 2h post load plasma 
glucose (2h PPG) and creatinine were performed on the 
Dimension Xpand plus chemistry analyzer using its 
commercial kits (supplied by Siemens Technology, 
Princeton, New Jersey, USA). Hemoglobin A1C (HbA1c) 
was measured as an index of metabolic control on a DCA 
2000 analyzer, fast ion exchange resin ( Roche Diagnostic, 
Germany). The reference range was 4.4% to 6.4%. Plasma 
insulin was assayed by an enzyme-linked immunosorbent 
assay (ELISA) insulin quantitative BIOS kit (Chemux 
BioScience, Inc, USA). Homeostasis model assessment of 
insulin resistance (HOMA-IR) was calculated with the 
formula: HOMA-IR = (Fasting insulin in mU/L X fasting 
plasma glucose in mg/dl)/ (405) [11]. Homeostatic model 
assessment Beta cell % (HOMA-β), a marker of basal 
insulin secretion of pancreatic β-cells, was calculated with 
the formula: HOMA-β cell % = (360 × fasting insulin in 
mU/L)/(fasting glucose in mg/dl – 63) [11]. Total 
cholesterol (TC), triglycerides (TGs), and high-density 
lipoprotein cholesterol (HDL-C) were estimated by 
commercially available kits (supplied by Spin react 
(Spain). Low-density lipoprotein cholesterol (LDL-C) was 
calculated according to Friedewald et al. [12].  
 

Flow mediated dilatation (FMD) 

     FMD was performed using high resolution ultrasound 
probe (Toshiba Powervision 6000 with a 7.5 MHz linear 
array transducer). Subjects were examined in a quiet, 
temperature-controlled room while they were fasting for 
8-12h and lying in a supine position for 10 minutes with 
their arms resting on a comfortable position in a cradle 
support to ensure stable conditions during scanning. The 
right brachial artery was scanned over a longitudinal 
section, 3-5 cm above the right elbow. The interface 
between the near and far arterial wall and the vessel 
lumen has to be clearly defined. Lumen diameter was 
measured as distance between media-adventitia 
interfaces of far and near wall (baseline diameter). The 
cuff was inflated to ≥ 50 mmHg above systolic pressure 
for 5 minutes to occlude arterial inflow. On cuff deflation, 
reactive hyperaemia in the brachial artery occurs and 
results in vasodilatation if endothelial function is intact. 
The second scan was taken 60-120 seconds after the 
rubber cuff had been deflated to assess hyperemia 
diameter or post reactive diameter. FMD was reported as 
the percentage change from the baseline diameter. Value 
of FMD was presented as: [(post reactive diameter– 
baseline diameter)/baseline diameter) x 100]. 
 

Statistical Methods  

     Data entry and analysis were performed using SPSS 
statistical package version 20. The data were expressed as 
mean ± SD for normally distributed data, frequency and 
proportion for categorical data and median (minimum-
maximum) for skewed data. Statistical comparison 
between 2 groups was assessed by Student’s t-test for 
parametric data, Mann Whitney (M.W.) for nonparametric 
data independent group and Wilcoxon signed rank test 
for nonparametric data dependent group. A chi-square 
test was used to compare categorical data. Pearson and 
Spearman correlations were used to study the relation 
between continuous variables. Multiple regression 
analysis was performed with Δ FMD as the dependent 
variable. SBP, TC, TGs, LDL and HOMA-IR were entered in 
the regression model. Δ: post treatment – pretreatment, P 
≤ 0.05 was considered as significant. 
 

Results 

     Table1 presents the baseline characteristics of the 
study subjects. Patients with newly diagnosed T2DM had 
significantly higher systolic blood pressure (SBP), 
diastolic blood pressure (DBP), BMI, WC, ALT, FPG, 2 h 
PPG, HbA1c, fasting insulin, HOMA-IR (p < 0.001) and TGs 
(P < 0.001) than did healthy controls, whereas they had a 
significantly lower HDL and HOMA-β (P < 0.001) than did 
healthy controls. Patients with newly diagnosed T2DM 
had significantly lower FMD than did healthy controls 
(13.32 ± 5.39 vs. 23.6 ± 4.69, P < 0.001) (Figure1). 
 
     Treatment with 100 mg daily sitagliptin for 24 weeks 
significantly reduced SBP, DBP, FPG (P < 0.001), 2 h PPG 
(P < 0.001), HbA1c (P < 0.001), ALT (P = 0.02), TGs (P < 
0.022), TC (P < 0.028), LDL (P = 0.009) and HOMA-IR (P < 
0.001), whereas fasting insulin (P < 0.001) and HOMA-β 
(P < 0.001) were significantly increased. However, there 
were not statistically significant differences in weight, 
BMI, WC, albumin, bilirubin, AST, creatinine, HDL, 
amylase and lipase before and after treatment with 
sitagliptin. The percentage of endothelial dysfunction 
(FMD < 10%) was significantly decreased after treatment 
with sitagliptin [37.5 % (15/40) vs. 5 % (2/40), P = 
0.001] (Table 2). FMD was significantly increased after 
treatment with sitagliptin in patients with newly 
diagnosed T2DM (13.32 ± 5.39 vs. 21.6 ± 7.42, P < 0.001) 
(Figure1). 
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Variables 
Patient with newly 

diagnosed T2DM (n = 40) 
Healthy controls (n = 40) P-value 

Age (years) 44.1 ± 10.44 42.5 ± 11.13 0.4 

Sex (Men/Women) 20 / 20 21 / 19 0.8 

SBP (mmHg) 120 (115-133.75) 120.0 (110-120) 0.008* 

DBP (mmHg) 80 (80-88) 80.0 (70-80) < 0.001* 

BMI (Kg/m2) 32.6 ± 4.63 23.4 ± 1.53 < 0.001* 

WC (cm) 103.0 ± 9.69 85.7 ± 2.21 < 0.001* 

Albumin (gm/dl) 4.3 (3.9 – 4.88) 4.7 (4.3 - 4.8) 0.08 

Bilirubin (mg/dl) 0.7 (0.5 – 0.8) 0.6 (0.5 - 0.7) 0.3 

ALT (U/L) 22 (18.25 – 34.75) 18.0 (17.0 - 25.0) 0.002* 

AST (U/L) 30 (22 – 45) 26.0 (20.0 - 39.8) 0.06 

Creatinine(mg/dl) 0.7 (0.7 – 0.88) 0.7 (0.5 - 0.8) 0.05 

FPG (mg/dl) 160.03 ± 15.21 82.9 ± 4.92 < 0.001* 

2 h PPG (mg/dl) 232 (209.25 – 258.75) 115 (105 - 120) < 0.001* 

HbA1c (%) 8.7 (8.03 – 9.15) 4.8 (4.4 - 5.0) < 0.001* 

Fasting insulin (μU/ml) 8.4 (6.05 – 10.18) 6.2 (5.3-8.5) 0.01* 

HOMA-IR 2.99 (2.5 – 4.32) 1.4 (1.1 - 1.7) < 0.001* 

HOMA-β (%) 31.65 (22.09 – 38.88) 121.0 (84.0 - 182.1) < 0.001* 

TGs (mg/dl) 156.3 ± 44.60 81.9 ± 8.8 < 0.001* 

TC (mg/dl) 201.4 ± 36.68 198.8 ± 5.7 0.6 

HDL (mg/dl) 40.8 (33.36 – 50.24) 58.9 (53.4 - 65.9) < 0.001* 

LDL (mg/dl) 128.3 (98.76 – 162.47) 125.2 (112.4 - 138.9) 0.8 

Amylase (U/L) 65.6 ± 17.3 60.3 ± 17.8 0.3 

Lipase (U/L) 39.7 ± 11.76 38.2 ± 12.4 0.6 

 

Table 1: Characteristics of patients with newly diagnosed T2DM (before treatment) and healthy controls.  

Data are presented as mean ± SD and median (minimum-maximum) ,SBP: systolic blood pressure, DBP: diastolic blood pressure, BMI: body mass index, 
WC: waist circumference, ALT: alanine transferase, AST: aspartate transferase, FBG: fasting plasma glucose, PPG: post prandial plasma glucose, HbA1c: 
hemoglobinA1c, TGs: triglycerides, TC: total cholesterol, HDL: high density lipoprotein, LDL: low density lipoprotein, HOMA-IR: homeostasis model 
assessment of insulin resistance, HOMA-β: homeostasis model assessment of beta cell function,*P is significant if ≤0.05. 
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Variables Pre-treatment Post-treatment P-value 

SBP (mmHg) 125 (115-133.75) 120 (110-128.75) 0.001* 

DBP (mmHg) 84 (80-88) 80 (71.25-88) 0.01* 

Weight (kg) 95 (81.25-100) 95 (82.25-100) 0.3 

BMI (Kg/m2) 32.28 (29.34-35.9) 32.26 (30.12-35.9) 0.3 

WC (cm) 103 (97.25-107.75) 100 (95-107) 0.06 

Albumin (gm/dl) 4.3 (3.9-4.88) 4.25 (4-4.5) 0.2 

Bilirubin (mg/dl) 0.7 (0.5-0.8) 0.7 (0.5 -0.78) 0.5 

ALT (U/L) 22 (18.25-34.75) 20 (19-30) 0.02* 

AST (U/L) 30 (22-45) 28 (22.25-35) 0.08 

Creatinine (mg/dl) 0.7 (0.7-0.88) 0.7 (0.7-0.8) 0.4 

FPG (mg/dl) 163(149.25-173) 136 (120.25-151) < 0.001* 

2 h PPG (mg/dl) 232 (209.25-258.75) 170 (154-182.25) < 0.001* 

HbA1c (%) 8.75 (8.03-9.15) 7.35 (6.73-7.7) < 0.001* 

Fasting insulin (μU/ml) 8.65 ± 3.12 10.29 ± 3.67 < 0.001* 

HOMA-IR 3.42 ± 1.32 3.1 ± 1.43 < 0.001* 

HOMA-β (%) 31.65 (22.09-38.88) 54.64 (37.2-63.36) < 0.001* 

TGs (mg/dl) 165(127.75-195) 158.5 (119.75-188.25) 0.02* 

TC (mg/dl) 195.5 (179.25-229) 191 (174.25-217.25) 0.02* 

HDL (mg/dl) 40.82 (33.36-50.24) 44.75 (37.68-54.17) 0.06 

LDL (mg/dl) 128.3 (98.76-162.47) 118.11 (94.97-147.76) 0.009* 

Amylase (U/L) 67.5 (51.25-81.75) 71.5 (54-78.75) 0.3 

Lipase (U/L) 40.5 (29-49.45) 39.5 (29.75-50.25) 0.2 

Endothelial dysfunction 15/40 (37.5%) 2/40 (5%) 0.001* 

 

Table 2: Effect of sitagliptin treatment on studied variables in patients with T2DM. 

Data are presented as mean ± SD and median (minimum-maximum), SBP: systolic blood pressure, DBP: diastolic blood pressure, BMI: body mass index, 
WC: waist circumference, ALT: alanine transferase, AST: aspartate transferase, FBG: fasting plasma glucose, PPG: post prandial plasma glucose, HbA1c: 
hemoglobinA1c, TGs: triglycerides, TC: total cholesterol, HDL: high density lipoprotein, LDL: low density lipoprotein, endothelial dysfunction: FMD < 
10%,*P is significant if ≤0.05. 
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Figure 1: FMD in patients with T2DM (before and after sitagliptin treatment) and controls.

     Δ FMD was negatively correlated with Δ SBP (r = –
0.342, P = 0.03), Δ FBG (r =-0.361, P = 0.02), Δ 2 h PPG (r 
=-0.352, P = 0.02), Δ HbA1c (r =-0.320, P = 0.04), Δ insulin 
(r =-0.332, P = 0.03), Δ TC (r =-0.330, P = 0.03), Δ TGs (r =-

0.345, P = 0.02) and Δ LDL (r =-0.373, P = 0.01) (Table 3). 
Δ FMD was positively correlated with Δ HOMA-β (r = 
0.329, P = 0.03) and negatively correlated with Δ HOMA-
IR (r =-0.380, P = 0.01) (Figure 2 and 3). 

 

Variables r P-value 

Δ SBP – 0.342 0.03* 

Δ DBP – 0.272 0.09 

ΔWC – 0.063 0.7 

Δ BMI – 0.203 0.2 

Δ FPG – 0.361 0.02* 

Δ 2 h PPG – 0.352 0.02* 

Δ HbA1c – 0.320 0.04* 

Δ insulin – 0.332 0.03* 

Δ ALT – 0.233 0.1 

Δ TC – 0.330 0.03* 

Δ TGs – 0.345 0.02* 

Δ LDL – 0.373 0.01* 

 

Table 3: Correlation between Δ FMD and Δ other variables in patients with newly diagnosed T2DM. 
 
Δ: post treatment-pretreatment, FMD: flow mediated dilatation, SBP: systolic blood pressure, DBP: diastolic blood pressure, FBG: fasting plasma  
glucose, PPBG: post prandial plasma glucose, HbA1c: hemoglobinA1c, ALT: alanine transferase, TC: total cholesterol, TGs:  triglycerides, LDL:low density 
lipoprotein, HOMA-IR: homeostasis model assessment of-insulin resistance, HOMA-β: homeostasis model assessment of beta cell function, P is 
significant if ≤0.05. 
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Figure 2: Correlation between Δ FMD and Δ HOMA-β. 

 

 

Figure 3: Correlation between Δ FMD and Δ HOMA-IR. 

 

r = – 0.380                      

p = 0.02 

r = 0.329                      

p = 0.03 
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     With multivariate linear regression analysis, ΔTGs (B =-
0.140, P = 0.03), Δ LDL (B =-0.158, P = 0.02), Δ HOMA-IR 

(B =-0.904, P = 0.02) were independent predictors of Δ 
FMD after adjustment of Δ SBP, ΔTC (Table 4). 

 
 

Variables B CI P-value 

Δ SBP – 0.162 - 0.469: - 0.145 0.2 

Δ TC – 0.047 -0.175: - 0.081 0.5 

Δ TGs – 0.140 -0.245: - 0.035 0.03* 

Δ LDL – 0.158 - 0.276:- 0.04 0.02* 

Δ HOMA IR – 0.904 -1.528: -0.28 0.02* 

 

Table 4: Multivariate linear regression analysis with Δ FMD as dependent variable in patients with T2DM. 
 
R2 = 0.461B: unstandardized coefficient, Δ: post treatment-pretreatment, SBP: systolic blood pressure, TGs: triglycerides, TC: total cholesterol, LDL: low 
density lipoprotein, HOMA-IR, homeostasis model assessment of-insulin resistance. 

 
 

Discussion 

     In patients with newly diagnosed T2DM, 100 mg daily 
sitagliptin treatment for 24 weeks significantly decreased 
FBG, 2h PPG, HbA1c. These results are consistent with 
many reports which studied the effect of sitagliptin on 
glycaemic homeostasis [13-15]. Surprisingly, Yanai et al. 
[16] found no significant difference in plasma glucose 
after 6-month of sitagliptin treatment, this study can be 
criticized by non-compliance of participant individuals as 
HbA1c is decreased while no change in plasma glucose. 
 
     In the current study, fasting insulin levels and HOMA-β 
increased and HOMA-IR decreased after treatment with 
sitagliptin in patients with newly diagnosed T2DM. 
Increase fasting insulin in the context with lowered blood 
glucose level; suggest an augmentation of insulin 
response. Accordingly, Scott et al. [17] and Drucker et al. 
[18] showed an improvement of HOMA-β associated with 
enhanced insulin release in the fasting state after 
treatment with sitagliptin. Also, Mohan et al. [19] and 
Tremblay et al. [20] demonstrated a larger increase in 
HOMA-β and a decrease in HOMA-IR from baseline in 
patients treated with sitagliptin compared with placebo-
group suggesting an improvement in insulin sensitivity 
with sitagliptin treatment. In contrast, Raz et al. [9] and 
Tremblay et al. [20] found no significant effect of 
sitagliptin treatment on insulin level. Raz et al. [9] 
observed improvements in HOMA-β, but there was no 
significant effect of sitagliptin treatment compared with 
placebo on HOMA-IR, suggesting that sitagliptin may not 
affect peripheral insulin sensitivity.  
 

     In patients with T2DM, the incretin response and the 
following insulin secretory response after oral glucose is 
typically decreased by 50% compared with healthy 
control subjects. These observations suggest that 
deficient incretin secretion may be a critical point in the 
pathogenesis of T2DM [21]. Sitagliptin is one of the DPP-4 
inhibitors which prevent the inactivation of incretins; 
increasing the endogenous active incretin levels. Incretins 
stimulate insulin secretion from pancreatic β-cells in 
glucose dependent manner, which is favorable for the 
treatment of diabetes [16]. Incretins can improve insulin 
sensitivity both locally (β-cells) and systemically (liver 
and muscle). These beneficial effects of sitagliptin on β-
cell function are mediated via a direct action on β-cells by 
enhancing proliferation, neogenesis, and decrease the 
apoptosis and/or an indirect one by reducing the 
circulating levels of glucose and FFAs and, in 
consequence, glucolipotoxicity [22]. Also, they facilitate 
the uptake of glucose by muscles and liver while 
simultaneously suppressing glucagon secretion by α cell 
of the islets, leading to reduced endogenous production of 
glucose from hepatic sources [18]. 
 
     We observed a significant decrease in TC, TGs and LDL 
after treatment with sitagliptin, whereas no significant 
change was detected in HDL. Similarly, Horton et al. [23] 
showed an improvement in lipid parameters from 
baseline in the sitagliptin group, with the exception of 
HDL, which remained unchanged. However, Derosa et al. 
[24] noted that sitagliptin decreased TC, LDL, TGs and 
increased HDL. In contrast, Kubota et al. [14] confirmed 
no significant changes in the lipid profile after 50 mg/day 
sitagliptin treatment for 12 weeks; the difference in dose 
and duration of sitagliptin treatment may explain this 
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discrepancy. Improvement of lipid profile may be due to 
the improvement in glycaemic control and insulin 
resistance. Also, delayed gastric emptying [25] can be 
another proposed mechanism by which the incretins 
could reduce lipemia.  
 
     Our study revealed significant reductions in SBP and 
DBP after treatment with sitagliptin in patients with 
T2DM. In agreement, Takeda et al. [26] and Sakamoto et 
al. [27] concluded that both SBP and DBP were 
significantly decreased after treatment with sitagliptin. In 
addition, Mistry et al. [28] confirmed that sitagliptin 
treatment was associated with a small but statistically 
significant (2-3 mmHg) decrease in SBP evaluated by 24-
hour ambulatory monitoring. However, Kubota et al. [14] 
found non-significant reduction in BP with sitagliptin. 
This is could be explained by the short term duration of 
this study. GLP-1(7–36) exhibits vascular actions via GLP-
1 receptor signaling and GLP-1(9–36), a metabolite of 
GLP-1 (7–36), has vasodilator effects independent of the 
GLP-1 receptor. DPP-4 inhibition within the 
microcirculation relaxes vascular tone mediated by NO 
causing peripheral vasodilatation and decreased 
peripheral vascular resistance [29]. The impact of 
incretin-based therapy on BP appears to be also related to 
activation of GLP-1 receptors in renal tissue, which results 
in decreased expression of the sodium-hydrogen 
transporter type 3 and leads to increased dieresis and 
sodium excretion in proximal renal tubules [30]. 
 
     We noted that patients with T2DM had significantly 
elevated ALT compared with healthy controls; ALT was 
significantly decreased after treatment with sitagliptin. 
The most common cause of a mild elevation of ALT is non-
alcoholic fatty liver disease (NAFLD) [31], which is the 
most prevalent liver disease in T2DM. A central 
abnormality in the pathogenesis of steatosis appears to be 
insulin resistance resulting in lipolysis, which increases 
circulating free fatty acids, which are then taken up by the 
liver as an energy source [32]. In parallel, Nauck et al. [33] 
found a slight decrease in ALT from baseline after 
treatment with sitagliptin for 52 weeks in 1172 patients. 
This modest reduction in ALT with sitagliptin suggests 
that a decrease in hepatic fat may have occurred. 
However, we did not perform hepatic imaging to ascertain 
this possibility, so the need for additional studies may be 
warranted. In contrast, Arase et al. [34] revealed no 
significant changes of average AST and ALT levels on 
sitagliptin treatment in patients with T2DM and NAFLD. 
So they speculated that sitagliptin is effective and safe for 
the treatment of T2DM complicated with non-alcoholic 
fatty infiltration in the liver. 
 

     In the present study, we observed that FMD was lower 
in patients with newly diagnosed T2DM than in healthy 
controls. In accordance, Henry et al. [35] concluded that 
T2DM is independently associated with impaired FMD. Su 
et al. [36] also assessed endothelial dysfunction in early 
stages of DM via FMD in 30 impaired fasting glucose (IFG) 
patients, 38 impaired glucose tolerance (IGT) patients, 
and 44 T2DM patients, they found that subjects with IFG 
and IGT had impaired FMD compared with subjects those 
with normal glucose tolerance, FMD was also impaired in 
patients with T2DM than those with IFG and IGT. 
Interestingly, even in normoglycemic subjects who are 
liable to develop DM, impaired endothelial dysfunction 
has been observed during an OGTT. This has led to the 
hypothesis that endothelial dysfunction may precede the 
development of overt DM, and that a repeated and 
prolonged exposure to postprandial hyperglycemia may 
play a significant role in the development of 
atherosclerosis [37].  
 
     Our findings revealed a significant improvement in 
endothelial dysfunction after treatment with sitagliptin; 
FMD was significantly increased to the point that it is not 
significantly different than the FMD of healthy controls 
which is surprising. In multiple regression analysis, each 
of ΔTGs, Δ LDL and Δ HOMA-IR were negative 
independent predictors of Δ FMD.  
 
     In support, many studies reported improvement of 
endothelial dysfunction with sitagliptin treatment [14, 38-
40]. The independent associations of FMD with TGs have 
been previously reported [41, 42]. Transient 
triglyceridemia decreases vascular reactivity, presumably 
by both endothelium-dependent and endothelium-
independent mechanisms [43]. Post-prandial lipaemia, 
with the production of TGs-enrichment of VLDL, results in 
endothelial dysfunction by an oxidative stress mechanism 
in patients with T2DM. Hence, exaggerated post-prandial 
lipaemia associated with reduced HDL-C may be 
important in the pathogenesis of vascular disease, 
particularly in T2DM [44]. Elevated levels of LDL were 
also found to be a major risk factor for atherosclerosis 
[45]. Moreover, oxygen-derived free radicals mediate the 
disruption of the endothelial cell surface layer and 
increase vascular wall adhesiveness by oxidized LDL [46]. 
In previous studies, HOMA-IR has been reported to be an 
independent predictor of brachial artery FMD [47,48]. 
Insulin resistance is frequently associated with 
endothelial dysfunction [49]. Normally the balance 
between NO-dependent vasodilator action and ET-1-
dependent vasoconstrictor action of insulin is regulated 
by phosphatidylinositol 3-kinase-dependent (PI3K) and 
mitogen-activated protein kinase (MAPK)-dependent 
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signaling in vascular endothelium, respectively. During 
insulin-resistant conditions, pathway-specific impairment 
in PI3K-dependent signaling may cause imbalance 
between production of NO and secretion of ET-1 and lead 
to endothelial dysfunction [50]. 
 
     In multiple regression model, R2 = 0.46% suggesting 
that about 54% of improvement in FMD can’t be 
explained by improvement in TGs, LDL and HOMA-IR. 
This improvement may be due to a direct effect of 
sitagliptin on FMD or indirect effect through unmeasured 
variables in our study such as; adiponectin [14,51] and 
plasma levels of asymmetric dimethylarginine (ADMA) 
[52].  
 
     We and others [53,54] found that sitagliptin mostly 
have a neutral effect on body weight. However, 
Katsuyama et al. [55] confirmed that body weight 
significantly decreased by 1.5 kg after sitagliptin 
treatment for 6 months in obese group, while body weight 
did not change in non-obese group.  
 
     In the current study, amylase and lipase enzymes were 
significantly unchanged after sitagliptin treatment; 
suggesting that this drug may not be a risk factor for 
development of pancreatitis. These results are in parallel 
with Monami et al. [56] who conducted a meta-analysis of 
134 eligible trials of patients with T2DM using sitagliptin 
for 12 weeks or more. This meta-analysis does not 
suggest any increase in the risk of pancreatitis with 
sitagliptin use or other DPP4 inhibitors. However, 
Elashoff et al. [57] reported a six fold increased risk of 
pancreatitis in patients using sitagliptin compared to 
users of other antidiabetic therapies. This study was 
strongly criticized as it was based on selected data 
retrieved between 2004 and 2009 from the FDA’s 
Adverse Event Reporting System [58]. 
 

Conclusion 

     Sitagliptin monotherapy is an attractive therapeutic 
strategy with a good safety profile for patients with newly 
diagnosed T2DM; it is effective not only on glycaemic 
control and insulin sensitivity but, also it ameliorates 
endothelial dysfunction, blood pressure and dyslipidemia. 
Further long term studies may be warranted for better 
evaluation.  
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