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Abstract 

Metabolic syndrome (MetS) and type 2 diabetes mellitus (T2DM) are associated with artherogenic dyslipidemia and 

abnormal postprandial lipoprotein metabolism which consists with elevated fasting and postprandial triglyceride-rich 

lipoproteins (TRLs), small dense low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol as 

cardiovascular disease risk factors. These abnormal lipids concentrations can result from alterations in the production, 

conversion, or catabolism of lipoprotein particles. Whereas the liver is the central organ in lipogenesis, gluconeogenesis 

and cholesterol metabolism and the intestine is also a major role in lipoprotein production. However, many research 

studies demonstrated a variety of pathological conditions focused on the metabolic functions within the liver. As 

observed in the world population, increase in the prevalence of MetS and T2DM promotes pathophysiological from 

atherogenic dyslipidemia and cause non-alcoholic fatty liver disease (NAFLD). Alterations in insulin activity, response 

and signaling are held accountable for these alterations in lipid storage, transport and-oxidation. This review focuses on 

dysfunctions and alterations in increased lipoprotein production prolongs dyslipidemia, hepatic lipid uptake, storage and 

metabolism in the clinical of NAFLD in MetS and T2DM patients, and may directly contribute to cause atherogenesis in 

these patients. 
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Introduction 

Obesity is increasing dramatically in the world with 
consequences important pathological of type 2 diabetes 
mellitus (T2DM) and cardiovascular disease (CVD) [1]. 
About 350 million cases global incidence of T2DM is 
projected to 592 million by 2035, with estimated to reach 
$132 billion to diabetes in the United States [2] 20% 
number of adults with diabetes are in developed 
countries and by 69% in developing countries [3]. These 
increasing rates of T2DM worldwide represent the 
important disease burden to the world population as well 
as for the total health care system. In general of classical 
perception, adipose tissue as an organ of fatty acids 
storage, has been known and replaced over the last few 
years by the research knowledge that adipose tissue has 
the central role in lipid and glucose metabolism and also 
produces a large number of adipokines and hormones, e.g. 
leptin, adiponectin, interleukin-6 (IL-6), tumour necrosis 
factor- (TNF-), angiotensinogen, and plasminogen 
activator inhibitor-1 (PAI-1) [4]. Excessive visceral 
obesity, referred as metabolic syndrome (MetS) is 
associated with the increasing incidence of CVD and 
T2DM [5]. There are several CVD risk factors including (i) 
age, gender and genetics as un-modifiable factors and (ii) 
traditional risk factors as hypertension, dyslipidemia, 
hyperglycemia and smoking. This cardiometabolic risk is 
driven by the interplay between these factors and the 
components of MetS associated with T2DM. The 
association of atherogenic dyslipidemia with MetS and 
T2DM is characterized by a cluster of interrelated in 
abnormalities of lipoprotein metabolism, which consists 
of elevated plasma triglyceride (TG)-rich lipoproteins 
(TRLs) of both fasting and postprandial state, reduced 
high-density lipoprotein (HDL) cholesterol and small 
dense low-density lipoprotein (sdLDL). 

 
Nonalcoholic fatty liver disease (NAFLD) is the liver 

disorders ranging from a simple steatosis to nonalcoholic 
steatohepatitis and cirrhosis (as advanced pathologies). 
The central obesity associated with insulin resistance is 
the major cause of hepatic steatosis which is 
characterized by over triglyceride-rich lipid accumulation 
in the liver. The evidence of triglyceride-rich lipid 
accumulation supports by dysregulation of adipose 
lipolysis and liver de novo lipogenesis (DNL) plays a 
major role in hepatic steatosis. This review aims to 
summarize the understanding of the pathophysiology of 
adipose tissue metabolism, which is altered by central 
obesity and T2DM, causes insulin resistance in the liver 
and skeletal muscle. The contribution of the alterations in 

hepatic glucoseandlipid metabolism by disturbing 
theinsulin signalling pathways through fatty acids in 
circulation causing lipid overload and lipotoxicity and are 
linked to NAFLD pathogenesis [6].  
 

Distribution of Triglyceride (TG)-Rich 
Lipoproteins 

Dietary lipids are hydrolyzed and taken up by 
enterocytes in the intestinal lumen [7]. The lipids are 
assembled into the chylomicron particles by using 
apolipoprotein (apo) B-48. Then, these chylomicrons are 
secreted into lymphatic vessels originating from the villi 
of the small intestine and enter into bloodstream at the 
thoracic duct's connection with the left subclavian vein. 
TRLs consist with a core neutral lipids (mainly 
triglycerides and some of cholesteryl esters) surrounded 
by a monolayer of phospholipids, free cholesterol and 
proteins. Each TRL particle contains one molecule of 
apoB. Plasma TRLs are the mixture of lipoprotein species 
and derived from the intestine (chylomicrons) or the liver 
[very low density lipoprotein (VLDL)] [7, 8]. ApoB exists 
in two major forms, apoB-48 and apoB-100, both are 
coded by the same gene. ApoB-48, which is formed in the 
intestine and is present on chylomicrons and chylomicron 
remnants, while apoB-100 presents on VLDL, 
intermediate-density lipoprotein (IDL) and low density 
lipoprotein (LDL). VLDL in the circulation is exposed and 
catalyzed by lipoprotein lipase (LPL) to remove 
triglycerides for storage or energy production in adipose 
tissue, cardiac muscle and skeletal muscle. After 
triglycerides were removed from large VLDL1 by LPL, 
they increases density and become to VLDL2 particles. 
The activity of LPL determines for the residence time 
forVLDL1 and VLDL2 particles in circulation. 

 
VLDL particles can be separated into two classes: (i) 

VLDL1, a large triglyceride-rich particle [Svedberg 
flotation rate (Sf) 60-400] and (ii) VLDL2, a smaller, 
denser particle (Sf 20-60). Large VLDL1 particles were 
used as the major determinant for plasma triglycerides 
variation of between healthy subjects and T2DM patients, 
and have been reported elevated VLDL1 particles in 
T2DM subjects [9]. Increased secretion of VLDL from the 
liver is the major determinant of postprandial 
dyslipidemia (elevation of chylomicrons and chylomicron 
remnants) [10]. Thus, the plasma triglyceride 
concentration may reflect the balance between the 
secretion and removal of TRLs. In normal physiology, 
insulin inhibits the production of apoB-48 and also 
inhibits chylomicrons secretion [11]. Thus, insulin 
resistance may cause chronic intestinal apoB-48 
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overproduction to cause more efficiency of intestinal fat 
packaging and contribute to liver lipids and postprandial 
lipidemia [11,12]. About 80% of elevated triglycerides 
after a fat-load meal come from apoB-48-containing 
chylomicronsparticles [13], and approximately 80% of 
the increase in another particle is accounted from apoB-
100-containing VLDL particles [14]. 
 

VLDL Synthesis, Secretion and Dysregulation 

Recently research studied report the overproduction 
of large VLDL1 particles from liver, is a major factor of the 
of serum triglycerides concentration in T2DM patients 
[15]. This overproduction and secretion of large VLDL1 
particles is due to the overproduction of both VLDL1-
triglyceride and VLDL1-apoB to cause increased 
concentration of VLDL1 particles that are similar in size 
and composition to those of all subjects. Many research 
data demonstrated that hepatic lipid metabolism is 
severely dysregulated in T2DM [15,16]. The liver plays a 
central role of lipid metabolism. Hepatic lipid homeostasis 
is the balance between the import and export of lipids 
while an imbalance dysregulated the import and export of 
lipids, these processes leads to increased VLDL secretion 
or increased lipid accumulation in hepatocytes to cause 
hepatic steatosis or non-alcoholic fatty liver disease 
(NAFLD), common occurred in MetS and T2DM [16,17]. 
The synthesis and secretion of VLDL particles has been 
studied in hepatoma cell lines and hepatocytes from 
animals, which is dependent on triglyceride and apoB-100 
substrates availability and is regulated by insulin and 
hormones [18]. In general, free fatty acids (FFAs) were 
used for hepatic TG formation are derived from three 
major sources: (i) diet, (ii) de novo lipogenesis (DNL), and 
(iii) adipose tissue lipolysis. Donnelly, et al. demonstrated 
that in the livers of NAFLD patients, 60% of hepatic TG 
accumulation is derived from FFAs mobilized from 
peripheral adipose tissue, 25%from hepatic DNL, and 
15% from dietary lipids [19]. This evidence indicates that 
dysregulation of adipose lipolysis and hepatic DNL plays 
major roles of TG accumulation in liver and progression of 
NAFLD pathogenesis. In normal physiology, DNL is 
stimulated by increased plasma glucose and insulin that 
occurs at postprandial state while lipolysis occurs at 
fasting state that is induced by catecholamines, natriuretic 
peptides, and glucagon but suppressed by insulin [20]. 
Therefore, disorder in endocrine system can also directly 
contribute to the development and progression of NAFLD. 

Metabolism of dynamics FFAplaysthe major role in 
hepatocytes triglyceride synthesis and the 
TGaccumulation in liver [21,22]. In fasting state, declined 
insulin level stimulates TG hydrolysis in adipocyte to 

mobilize FFAs for non-adipose tissue using such as the 
liver. However, in insulin resistant state, which is 
associated with central obesity or T2DM condition, 
adipocyte lipolysis increases regardless of nutritional 
fluctuations, leading to cause abundant FFAs released into 
the blood circulation [19]. Overall the FFAs delivery from 
the adipose tissue is increased in obesity and T2DM. 
There are many membrane-bound proteins in the liver, 
which are responsible for circulating FFAs transportation 
into hepatocytes, such as fatty acid transporter protein 
(FATP)-2, FATP-5 [23], fatty acid translocase (FAT/CD36) 
[24], fatty acid binding proteins (FABP)-1, FABP-4, FABP-
5 [25], and caveolins [26]. Up-regulation of many FFA 
transporters is associated with insulin resistant state and 
increased hepatic steatosis in NAFLD patients [27]. The 
expression of these FFA transporters is regulated by 
insulin and nuclear receptors, such as liver X receptor 
(LXR) [28], farnesoid X receptor (FXR) [29], pregnane X 
receptor (PXR) [30], peroxisome proliferator-activated 
receptor (PPAR)-α, and PPAR-γ [31]. Therefore, the 
targeting of these nuclear receptors is attractive receptors 
for NAFLD prevention. Notably the FA sources for the 
liver fat and the released VLDL particles are the same 
[32]. 
 

Hepatic De Novo Lipogenesis 

Increased levels of FFAs in circulation play an 
important role of hepatic steatosis in obese and T2DM. 

 
De novo lipogenesis, locally synthesized FFAs from 

glucose also contribute about one-third proportion of the 
total TGs accumulation in the livers of NAFLD patients 
[19]. In normal physiological, DNL postprandial increases 
which is mediated by the two transcriptional factors: (i) 
Sterol regulatory element binding protein-1c(SREBP-1c) 
[33], which is activated by insulin; and (ii) Carbohydrate 
response element binding protein (ChREBP), which is 
activated by glucose [34]. During carbohydrate feeding, 
insulin induces SREBP-1c activation, which involves by 
two mechanisms: (i) Transcriptional up-regulation and 
(ii) Proteolytic cleavage activation of SREBP-1c precursor 
[35]. SREBP-1c precursor localized at the endoplasmic 
reticulum (ER) membrane, where it interacts with SREBP 
cleavageactivating protein (SCAP) [35,36]. SCAP interacts 
with insulin-induced gene (INSIG) protein, which retains 
the SREBP-1c/SCAP complex in the ER when cellular 
cholesterol is high [37]. SCAP will dissociate from INSIG, 
and the SREBP-1c/SCAP complex is transported into the 
Golgi apparatus as coat protein II vesicles when 
cholesterol depletion or presence of insulin [38]. In Golgi 
apparatus, SREBP-1c precursor is cleaved by two 
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proteases, (i) S1P and (ii) S2P, releasing its N terminus as 
the active form of the transcription factor. Then, enter the 
nucleus to activate the lipogenic gene expression [39]. In 
the insulin-resistant liver, lipogenesis is selectively 
enhanced even resistance to insulin-mediated 
suppression of gluconeogenesis [39]. These evidences 
suggest that ER stress activates the cleavage of insulin-
independent SREBP-1c [40]. In obese animal model, the 
ER stress inhibition decreases SREBP-1c activation and 
lipogenesisto improve hepatic steatosis and insulin 
sensitivity [40]. The transcriptional factors, ChREBP when 
cellular glucose is low, it localizes in the cytoplasm, when 
cellular glucose is high, it enters into the nucleus [34]. 
Glucose activates ChREBP expression, regulated its 
translocation from the cytoplasm to the nucleus, and 
promoting its binding with carbohydrate responsive 
element (ChoRE) [34,41]. ChoRE is present at the 
promoters of glycolytic and lipogenic genes, including 
acetyl-CoA carboxylase 1, fatty acid synthase (FAS), and 
stearoyl-CoA desaturase 1 (SCD-1) [34,42]. ChREBP 
activation mediated the lipogenic genes expression may 
increase TG synthesis. Consistently within the NAFLD 
patients demonstrate increased hepatic enzyme activities 
for TG synthesis, such as glycerol-3-phosphate 
acyltransferase, 1-acylglycerol-3-phosphate 
acyltransferase, and diacylglycerolacyltransferase [42,43]. 
Under fasting condition in NAFLD patients, DNL is not 
further increase postprandially suggested that the liver of 
these patients may have reached the maximal capacity in 
DNL [19,44]. 
 

Altered Hepatic TG Secretion 

Hepatic TGs were packaged as a constituent of very 
low density lipoprotein (VLDL) for secretion into the 
blood circulation. VLDL particles assembly occurs in the 
ER, this process involves the interactions of lipids and 
apoB-100 [45]. This process is mediated by microsomal 
TG transfer protein (MTP), that has apoB100 binding 
activity and lipid transfer activity [46]. The VLDL 
secretion rate depends on the availability of hepatic TG 
lipids and the overall hepatocytes capacity for VLDL 
assembly. When TGs are unavailable, lipid-free apoB100 
is degraded via proteasomal and non-proteasomal 
pathways [47]. Insulin plays the major role in regulation 
of the capacity for VLDL assembly. For the response of 
insulin action, apoB-100 is degraded [47], while MTP 
expression is suppressed [48]. Then, impaired VLDL 
assembly and secretion can cause the excessive lipid 
accumulation in the liver, as found in the 
hypobetalipoproteinemiapatients that caused from apoB 
mutation [49] or in the abetalipoproteinemia that caused 

from MTP mutations [50]. However, NAFLD is 
characterized by increased expression of hepatic apoB-
100 and MTP [51], and also characterized by VLDL 
particles overproduction, which may enhance lipid 
availability from fat lipolysis and hepatic DNL and the 
failure of insulin to suppress VLDL production. VLDL 
overproduction and secretion may be the compensatory 
mechanism to protect the liver from steatos is under over 
nutritional conditions. However, under prolonged over 
nutrition condition, this mechanism may fail to counter-
balance to cause chronic increases in liver TG synthesis, 
resulting in hepatic steatosis. These observations may 
demonstrate the disorder stimulation of lipogenesis in 
insulin resistant liver. 
 

Hepatic TG hydrolysis, Fatty Acid Oxidation and 
Autophagyin Fatty liver 

Hepatic TGs hydrolysis and fatty acid β-oxidation is 
the other metabolic pathway for the hepatic TGs disposal 
in mitochondria. All of the excessive TGs are stored in 
cytosolic LDs and have to be hydrolyzed to release FFAs 
for utilization by using functional hydrolases. Wu, et al. 
reported that the deletion of adipose triglyceride lipase 
(ATGL) induces hepatic steatosis [52]. This ATGL enzyme 
requires comparative gene identification-58 (CGI-58) as a 
co-activator for the full activation. [This CGI-58 also 
known as α/β-hydrolase domain-containing 5 (Abhd5)] 
[53]. The deletion of CGI-58 in liver relative to ATGL 
causes more advanced TG accumulation in liver to cause 
NAFLD, NASH and hepatic fibrosis [54], while the deletion 
of ATGL knockout mice develop only simple steatosis but 
not NASH or fibrosis [52]. This suggests that the CGI-58 
plays an essential role in NAFLD development and 
progression. 

 
Autophagy is a catabolic process of basal turnover of 

the constituents of damaged cell, organelles, lipids and 
LDs to lysosomes for degradation in normal physiological 
conditions. Autophagic turnover increases in prolonged 
starvation to maintain the cellular energy homeostasis. 
Singh et al. have demonstrated the downregulation of 
lipid-specific macroautophagy in the liver of genetic and 
dietary obese mice, promotes steatosis [55]. This also 
found decreased hepatic autophagy in obese mice [56]. 
There are many mechanisms that account for the 
autophagy decline [55]: (i) Elevated autophagy-related 
gene-7 degradation by the obesity-induced calcium-
dependent protease calpain-2 [56], (ii) Increased amino 
acid flux into hepatocytes in overnutrition state to cause 
hyper-activation of rapamycin signaling, an autophagy 
inhibitory pathway [57], (iii) reduction in lysosomal 
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acidification and cathepsin L to cause impairs substrate 
degradation in autolysosomes [58]. Fukuo, et al. 
demonstrated that the expression of cathepsin B, D, and L 
levels is decreased in the liver of NAFLD patients [59]. 
The alterations of AMPK and PI3K signaling pathways 
may also regulate autophagy to influence NAFLD 
development and progression in obese. Schematic of 
these processes were summarized in Fig 1. 
 

Genetic and NAFLD Development 

The etiology of hepatic steatosis is multifactorial, 
genetic involvement [60] and life style or environmental 
factors, including over nutrition, alcohol consumption, 
virus infection, drugs, or altered immune function. 
Hepatic steatosis is an early and simple form of fatty liver 
disease, which is characterized by triglyceride (TG)-rich 
lipid droplets (LDs) accumulation in the hepatocytes, but 
without hepatic inflammation or liver injury. Hepatic 
steatosis is diagnosed when present hepatic TG content 
exceeds the 95th percentile for healthy individuals (>55 
mg per g of liver) or present cytoplasmic LDs more than 
5% of hepatocytes [60]. Nonalcoholic fatty liver disease 
(NAFLD) is the common fatty liver disease and covers the 
full spectrum of liver pathologies, such as hepatic 
steatosis, nonalcoholic steatohepatitis (NASH) and 
cirrhosis. Hepatic steatosis is benign. However, some of 
these steatosis patients may develop to NASH and may 
progress to hepatic fibrosis, cirrhosis or cancer [61]. The 
prevalence of fatty liver disease is estimated to be 20%–
30% in Western countries and 5%-18% in Asia [62,63]. 
Genetic is a significantly contributor to cause NAFLD [64]. 
According to the advances study in this field as: (i) 
Identified a missense variant in patatin-like 
phospholipase domain-containing 3 (PNPLA3),it’s 
strongly associated with hepatic TG levels [65], (ii) 
Identifieda common SNPs associated with hepatic TG 
levels [66],(iii) Including two variants in 
PNPLA3(rs738409 and rs2281135) and TM6SF2 
(rs58542926) [67]. The PNPLA3 function is involved with 
acylglycerol synthesis and hydrolysis [68]. Neither 
depletion nor over expression of wild-type PNPLA3 
affects hepatic TG levels in mice [69], whereas hepatic 
over expression of PNPLA3 148M causes steatosis 
[70].PNPLA3 I148M has also been shown reduction of 
VLDL lipidation to promote lipid accumulation 
intracellular of the liver without affecting the body mass, 
dyslipidemia, or insulin resistance [71],(iv) Two SNPs in 
the promoter region of the APOC3 gene have been 
associated with NAFLD [72],but this APOC3 variants have 
failed to confirm with NAFLD in Hispanic, European 
American, African American and European subjects [73]. 

Conclusion 

Obese, MetS and T2DM patients have the higher risk 
for CVD than normal subjects. As the results of these 
metabolisms and signaling pathways that try to 
compensate for these dysregulation metabolism, 
including insulin resistance and NAFLD. The evidence that 
raised the concentration of VLDL and TG, is the major CVD 
risk factor and all-cause mortality. This failure includes 
lipotoxicity-associated disturbance in insulin activity and 
signaling, mitochondrial dysfunction, oxidative stress, and 
dysregulation of lipid transport and metabolism in 
adipose tissue and liver. This supported by the research 
studies in genetic and epidemiology evidences. The 
crosslink between fat transportation, metabolism and the 
liver is obvious. Prevention and therapeutic approaches 
should highlight on integrated pathophysiology of organ-
organ fat communications, transportation and 
accumulation. Hopefully, these results may lead to the 
new treatment that target on this hepatic dysregulation of 
large VLDL, TRLs clearance and postprandial 
hyperlipidemia. 
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