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Abstract

The global rise in metabolic disorders is strongly associated with excessive carbohydrate intake and physical inactivity. Rooibos 
(Aspalathus linearis), a South African plant, has been recognized for its antioxidant, immunomodulatory, and hepatoprotective 
properties, though its role in obesity-related metabolic dysfunction remains unclear. This study evaluated the effects of 
Rooibos tea on metabolic disturbances induced by a high-carbohydrate (HC) diet in mice. Male Balb-C mice were divided into 
four groups: Control (C, balanced diet), HC (high-carbohydrate diet), HCR (HC diet plus Rooibos tea for 8 weeks), and HCRT 
(HC diet followed by Rooibos tea for the final 2 weeks). Body weight and food intake were monitored. Blood was analyzed for 
glucose, glucose tolerance test, lipids, liver enzymes, cytokines (TNF-α, IL-6, IL-10), and nitric oxide (NO). Liver were collected 
to assess weight, lipid content, cytokine, NO, and histological changes. The HC diet increased adiposity, glucose intolerance, 
hepatic triglycerides, inflammatory markers, and induced hepatic steatosis. Rooibos supplementation significantly improved 
these alterations, reducing inflammation, improving glucose tolerance, and attenuating liver damage. These findings support 
Rooibos tea as a potential dietary strategy to prevent or ameliorate HC diet-induced metabolic dysfunction.
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Introduction

Changes in dietary patterns, such as the increased 
consumption of high carbohydrate diets and processed 
foods, combined with low or no physical activity have been 
identified as major contributors to the rise in body weight 
and obesity. According to the World Health Organization 
(WHO), the incidence of obesity among adults has tripled 
since 1975. In 2021, an estimated 1 billion adults were 
classified as overweight or obese [1]. If current trends 
continue, it is projected that by 2050, the number of adults 
living with overweight or obesity will reach approximately 
3.8 billion, representing more than half of the anticipated 
global adult population [1,2].

Obesity is strongly related to health risk , and it is 
diagnosed mainly by body mass index (>30) [2]. One of the 
main alterations in obesity is the excessive adipose tissue 
(AT), which is a multifunctional organ that exerts beyond 
roles other than just storage energy in form of lipids [3]. 
Different types of adipose tissue (e.g.: White, Beige and 
brown) perform distinct metabolic functions and differ in 
cellular composition and structural characteristics. White 
adipose tissue (WAT) is composed mainly of adipocytes 
containing a large unilocular lipid droplet and is primarily 
involved in energy storage and mobilization, as well as 
the secretion of adipokines [4]. When energy metabolism 
becomes imbalanced, the abnormal secretion of adipokines 
often leads to adipose tissue dysfunction and the development 
of obesity. Obesity is typically associated with elevated levels 
of C-reactive protein, pro-inflammatory cytokines (e.g., IL-
1β, tumor necrosis factor (TNF) and interleukin-6 (IL-6)), 
reactive oxygen species (ROS), pro-inflammatory leukocyte 
phenotypes, and an imbalanced production of lipid mediators 
compared to healthy individuals [4-6].

In individuals with obesity, systemic low-grade 
inflammation, along with more pronounced inflammation 
within white adipose tissue, promotes insulin resistance 
and contributes to harmful crosstalk between adipose tissue 
and other organs [7,8]. In this context, the liver is one of the 
organs most likely to be affected. Metabolic dysfunction-
associated fatty liver disease (MAFLD/NAFLD) is among the 
most prevalent chronic liver conditions worldwide and has 
increasingly become the leading form, affecting up to 38% of 
the global adult population [9]. MAFLD is diagnosed based 
on the presence of hepatic steatosis in combination with at 
least one of the following metabolic conditions: overweight/
obesity, type 2 diabetes mellitus (T2DM), or metabolic 
dysfunction [10]. Several distinct metabolic profiles may 
contribute to the development of MAFLD, including disorders 
in lipid, glucose, and bile acid metabolism; trace element 
accumulation; mitochondrial dysfunction, and alterations in 
immune metabolism [11-17].

Considering that MAFLD involves both inflammatory 
processes and oxidative stress, some studies have 
highlighted the potential use of natural anti-inflammatory 
and antioxidant agents, particularly those derived from 
plants [18]. In this context, the search for natural plant-
based compounds with promising effects in the treatment 
or prevention of metabolic diseases appears to be of great 
interest, as the currently available therapeutic options 
are not fully effective. One such candidate is Rooibos 
(Aspalathus linearis), for which scientific evidence has 
demonstrated several medicinal and therapeutic properties, 
including antioxidant, anti-inflammatory, anticancer, and 
chemopreventive effects, among others [19].

 Rooibos is a plant from the Fabaceae family that grows 
predominantly in South Africa [20]. The unfermented 
product retains its green color and is referred to as green 
rooibos. During fermentation, the color changes from green 
to red due to the partial oxidation of constituent polyphenols, 
which is why the final product is often called red tea [21]. 

Rooibos contains a wide variety of compounds, such as 
dihydrochalcones, flavanones, flavones, flavonols, lignans, 
hydroxycinnamic acids, phenolic carboxylic acids, linearthin, 
aspalathin, nothofagin among others [22,23]. Moreover, 
studies using animal models have shown that rooibos 
tea possesses potent antioxidant, immunomodulatory, 
hypoglycemic, hypolipidemic, and gastrointestinal integrity-
enhancing properties [21-28].

Given the numerous biological activities of rooibos, we 
believe it may be a promising candidate for the treatment and/
or prevention of metabolic disorders. Therefore, the present 
study aimed to evaluate the effects of Rooibos administration 
on metabolic, immunological, and histological alterations in 
animals fed a high-carbohydrate diet.

Methods

Animals and Treatment

Thirty-two (32) male Balb-C mice, with an initial 
body weight ranging between 19 - 25 g, were used in this 
study. The animals were housed in the animal facility of 
the Biochemistry Laboratory at the Federal University of 
Triângulo Mineiro under controlled conditions (12-hour 
light/dark cycle, ventilated shelving system, temperature 
maintained at 22 ± 2°C). All procedures were approved by 
the Ethics Committee on the Use of Animals (CEUA) at the 
Federal University of Triângulo Mineiro (Protocol Number: 
23085.002424/2018-59).

The animals were randomly assigned to the following 
experimental groups (n=8). Group 1 (C): Fed a normocaloric 
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Nuvital diet (4.0 Kcal/g) composed of carbohydrates 
(65.8%), fats (3.1%), and proteins (31.1%), with water 
provided ad libitum; Group 2 (HC): Fed a high-carbohydrate 
(HC) diet (4.4 Kcal/g) composed of carbohydrates (74.2%), 
fats (5.8%), and proteins (20.0%), with water ad libitum; 
Group 3 (HCR): Fed the HC diet with Rooibos tea provided 
ad libitum in place of water; Group 4 (HCRT): Fed the HC diet 
with water ad libitum for six weeks, followed by Rooibos tea 
replacing water during the final two weeks. 

The HC diet consisted of a previously standardized 
mixture containing 45% normocaloric Nuvital diet, 45% 
sweetened condensed milk, and 10% refined sugar [29]. 
Water/tea and food intake were monitored daily, while body 
weight was recorded weekly. After eight weeks on their 
respective diets, the animals underwent the designated 
experimental procedures.

Preparation of Rooibos Tea

Commercially available Rooibos red tea was used. The tea 
was prepared daily by infusing 10 g of tea leaves in 1000 mL 
of boiling water for 5 minutes. The solution was then filtered 
to remove solid residues, cooled to room temperature, and 
provided to the animals.

Collection of Biological Material

At the end of the experimental period, the animals were 
anesthetized with a solution of 10% ketamine (0.01 mg/g 
body weight) and 2% xylazine (0.1 mg/g body weight). Blood 
was collected via cardiac puncture. Epididymal adipose 
tissue (EAT), retroperitoneal adipose tissue (RAT), and liver 
were excised and weighed. A portion of the liver was fixed 
in formalin and subsequently stored in 70% ethanol for 
histological analysis. Another portion was stored at −80°C 
for cytokine analysis. Serum samples were stored at −20°C.

Biochemical Assays

Glucose (GLU), total cholesterol (TC), triglycerides 
(TAG), aspartate aminotransferase (AST), and alanine 
aminotransferase (ALT) levels were measured using 
commercial kits (Bioclin®). The results were expressed in 
mg/dL.

Glucose Tolerance Test (GTT)

After 7 weeks of treatment, the glucose tolerance test 
was performed on the HC, HCR, and HCRT groups. Animals 
were weighed and fasted for 6 hours with free access to 
water. At time zero (0 min), blood samples were collected 
via caudal vein puncture to determine baseline glycemia. 
Subsequently, a 20% glucose solution was administered 
intraperitoneally at a dose of 2 g glucose/kg body weight. 

Blood glucose levels were measured at 30, 60, and 120 
minutes using a glucometer (FreeStyle Optium Neo ®). The 
results were expressed in mg/dL.

Lipid Extraction and Quantification

A portion of the liver from each animal was used for total 
lipid (TL) quantification by the Folch method [30]. After total 
lipid quantification, the extracted fat was resuspended in 1 
mL of isopropyl alcohol for hepatic total cholesterol (TCh) 
and hepatic triglyceride (TAGh) assays, using commercial 
kits (Bioclin®). The results were expressed in g/100g of liver. 

Cytokine Assay

Serum levels of the pro-inflammatory cytokines TNF-α 
and IL-6, as well as the anti-inflammatory cytokine IL-10, were 
measured using ELISA kits (BD Biosciences ®). Liver tissues 
stored at -80°C were homogenized in PBS buffer containing 
protease inhibitors and 1% NP-40. After homogenization 
and centrifugation (12,000 RCF for 30 min), the supernatant 
was used to cytokine quantification using ELISA kits (BD 
Biosciences ® ). The results were expressed in pg/mL.

Protein and Nitric Oxide (NO) Quantification

Protein concentration was determined using a NanoDrop 
2000 spectrophotometer (Protein A280 software), with PBS 
(0.2 µL) serving as the blank. Nitric oxide quantification was 
performed using the Griess reaction [31]. The results were 
expressed in mM/mg.

Histology

Liver samples were evaluated using hematoxylin and 
eosin (H&E) staining. Images were captured with a ZEISS 
microscope equipped with an AxioCam ICc 5 camera and 
analyzed using AxioVision SE64 software.

Statistical Analysis

Group comparisons were performed using one-way 
ANOVA followed by Tukey’s post-hoc test. Results are 
expressed as mean ± standard error (SE), with significance 
set at p < 0.05.

Results

Although no statistically significant differences were 
observed in body weight (Figure 1) or food intake among the 
experimental groups, analysis of adipose tissue distribution 
revealed a marked increase in RAT weight in the HC (~92%), 
HCR (~130%), and HCRT (~84%) groups compared to 
the C group. In contrast, EAT and liver weights remained 
unchanged across all groups.
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Figure 1: 1A: Body weight of all experimental groups per week; 1B: Food intake of all experimental groups per week; 1C. 
Weight (g/100g BW) of epididymal adipose tissue (EAT), retroperitoneal adipose tissue (RAT), and liver. C, control diet and 
water;HC, high-carbohydrate diet and water; HCR, high-carbohydrate diet and Rooibos tea; HCRT, high-carbohydrate diet and 
water for 6 weeks, followed by Rooibos tea replacing water in the last 2 weeks. Results are expressed as mean ± standard error 
(n = 8 animals per group). *p<0.05 HC vs C; **p<0,05 HCR vs C; & p<0,05 HCRT vs C.

In the assessment of carbohydrate metabolism, the 
HC group showed a ~59% increase in random blood 
glucose levels compared to the C group, while Rooibos 
treatment did not significantly alter this parameter. Further 
assessment through the glucose tolerance test (GTT) 
revealed no significant differences in glycemic levels among 
the groups at 0 and 30 minutes. In contrast, at 60 minutes 
following glucose administration, the HCR and HCRT groups 

demonstrated a significant reduction in blood glucose levels 
of approximately 30% and 38%, respectively, compared to 
the HC group. Similarly, at 120 minutes, both the HCR and 
HCRT groups exhibited an ~21% reduction in glucose levels 
relative to the HC group. The area under the curve (AUC) 
was also significantly reduced in the HCR (~37%) and HCRT 
(~31%) groups compared to the HC group (Figure 2).

Figure 2: 2A: Random blood glucose levels of all experimental groups; 2B. Glucose tolerance test (GTT) of the experimental 
groups. 2C. Area under Curve of GTT experiemental groups. C, control diet and water; HC, high-carbohydrate diet and water; 
HCR, high-carbohydrate diet and Rooibos tea; HCRT, high-carbohydrate diet and water for 6 weeks, followed by Rooibos tea 
replacing water in the last 2 weeks. Results are expressed as mean ± standard error (n = 8 animals per group).  *p<0.05 HC vs 
C; #p<0.05 HCR vs HC; +p<0.05 HCRT vs HC.
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Lipid metabolism was evaluated by measuring serum 
lipid profiles, liver function biomarkers, and hepatic lipid 
content. TC levels were approximately ~41% higher in the HC 
group compared to the C group. TAG levels were reduced in 
the HCRT (42%) and (34%) compared to the C and HC group 

respectively (Table 1). TAGh content showed a significant 
increase in the HC (~45%) and HCR (~34%) groups relative 
to C (Table 2). No significant differences were observed in the 
liver enzymes AST and ALT or other hepatic lipid parameters 
in among the experimental groups (Table 2).

Groups TAG TC AST ALT

c 326.73 ± IS.SO IS3 .28 ± I6.29 SI.SO ± 4.49 23.16 ± 3.10

HC 291.I2 ± 30 .80 2I6.83 ± I3.94* 40 .42 ± 4.83 I7.!6 ± 1.60

HCR 229 .02 ± 27.16 I69 .85 ± I6.34 4S .42 ± 2.02 22 .40 ± 1.03

HCRT I90 .70 ± Il.84 &,+ I63.83 ± 6.75 40 .28 ± 2.SI 20 .40 ± 2.56

C: Control diet and water; HC: high-carbohydrate diet and water; HCR: high-carbohydrate diet and Rooibos tea; HCRT: high-
carbohydrate diet and water for 6 weeks, followed by Rooibos tea replacing water in the last 2 weeks. Results are expressed as 
mean ± standard error (n = 8 animals per group). &p<0.05 HCRT vs C; + p<0,05 HCRT vs HC; *p<0.05 HC vs C.
Table 1: Serum levels of triglycerides (TAG), cholesterol (CTO), AST and ALT in the experimental groups.

Groups TL TAGb TCb

c 1.04 ± 0.01 4.08 ± 0.25 1.26 ± 0.05

HC 1.28 ± 0.07 5.95 ± 0.36* 1.33 ± 0.04

HCR 1.28 ± 0.04 5.47 ± 0.31** 1.36 ± 0.05

HCRT 1.30 ± 0.09 4.71 ± 0.35 1.24 ± 0.06

C: control; HC: high-carbohydrate diet and water; HCR: high-carbohydrate diet and Rooibos tea; HCRT: high-carbohydrate diet 
and water for 6 weeks, followed by Rooibos tea replacing water in the last 2 weeks. Results are expressed as mean ± standard 
error (n = 8 animals per group). *P<0.05 HC vs C; **P<0.05 HCR vs C.
Table 2: Quantification of hepatic total lipids (TL), triglycerides (TAGh), and cholesterol (CTOh).

Systemic inflammation was assessed by measuring 
several cytokines following Rooibos treatment. Serum TNF-α 
levels were elevated ~83% in the HC group compared to 
the C. Notably, TNF-α levels were reduced by about 45% 
in the HCR group relative to HC. To further explore local 
inflammatory responses, we also quantified TNF-α in liver 
tissue. Hepatic TNF-α levels decreased by approximately 
~28% and ~30% in the HCR and HCRT groups, respectively, 

compared to C. A decrease of ~29% in TNF-α levels was also 
observed in the HCRT group compared to the HC group. It is 
important to note that there was a tendency for TNF-α levels 
to decrease (p = 0.08) in the HCR group compared to the 
HC group. No significant differences were observed in IL-6 
and IL-10 concentrations in either serum or liver across the 
experimental groups (Tables 3 & 4).

Groups TNF-alfa IL-6 IL-10

c 13.85± 2.68 0.08 ± 0.009 l.23 ± 0.12

HC 25.36 ± 1.8* 0.07 ± 0.2 l l.10 ± 0.ll

HCR 13.96 ± 0.84 # 0.104 ± 0.01 l.40 ± 0.16

HCRT 18.16 ± 3.90 0.09 ± 0.008 l.48 ± 0.12

C: control; HC: high-carbohydrate diet and water; HCR: high-carbohydrate diet and Rooibos tea; HCRT: high-carbohydrate diet 
and water for 6 weeks; followed by Rooibos tea replacing water in the last 2 weeks.Results are expressed as mean ± standard 
deviation (n = 8 animals per group).*P<0.05 HC vs C; #P<0.05 HCR vs HC.
Table 3: Serum cytokine levels of TNF-alpha, IL-6, and IL-10.
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Groups TNF-alfa IL-6 IL-10
c 55.24± 2.62 3.11±0.28 1.23±0.12

HC 54.17 ±2.49 3.75±0.18 1.10±0.11
HCR 39.58 ±5.32 ** 2.73±0.24 1.40±0.16

HCRT 38.38±4.25 &, + 3.22±0.21 1.48±0.12
C: control; HC: high-carbohydrate diet and water; HCR: high-carbohydrate diet and Rooibos tea; HCRT: high-carbohydrate diet 
and water for 6 weeks; followed by Rooibos tea replacing water in the last 2 weeks.Results are expressed as mean ± standard 
deviation (n = 8 animals per group). ** p<0.05 HCR vs C; &p<0.05 HCRT vs C; + p<0.05 HCRT vs HC.
Table 4: Hepatic tissue cytokine levels of TNF-alpha, IL-6, and IL-10.

To evaluate oxidative stress and the potential antioxidant 
effects of Rooibos, we measured NO levels in liver tissue. The 
HC diet led to a significant increase in hepatic NO levels, with 
values approximately 45% higher than the control (C) group. 

Rooibos supplementation effectively mitigated this response, 
reducing NO levels by about 29% in the HCR group and 35% 
in the HCRT group compared to HC (Figure 3).

Figure 3: Nitric Oxide Levels in Hepatic Tissue among the experimental groups. C, control; HC, high-carbohydrate diet and 
water;HCR, high-carbohydrate diet and Rooibos tea;HCRT, high-carbohydrate diet and water for 6 weeks, followed by Rooibos 
tea replacing water in the last 2 weeks.Results are expressed as mean ± standard deviation (n = 8 animals per group).*P<0.05 
HC vs. C; #P<0.05 HCR vs HC; +P<0.05 HCRT vs HC.

Finally, liver histology was assessed. Mice in the 
HC group displayed marked hepatocellular changes 
characterized by pale, swollen hepatocytes indicative of 
glycogen accumulation and lipid steatosis. Notably, Rooibos 
supplementation (HCR and HCRT groups) attenuated 
these histological alterations, with liver sections showing 

improved cellular morphology and reduced signs of steatosis 
(Figure 4). Overall, these results demonstrate that the high-
carbohydrate diet effectively induced classic metabolic 
disturbances associated with adiposity and hepatic steatosis, 
while Rooibos treatment significantly mitigated these effects.

Figure 4: Photomicrograph of liver sections. C, control; HC, high-carbohydrate diet and water; HCR, high-carbohydrate diet 
and Rooibos tea; HCRT, high-carbohydrate diet and water for 6 weeks, followed by Rooibos tea replacing water in the last 2 
weeks (n = 8 animals per group). Hematoxylin and eosin staining (H&E). Objective: 100×.
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Discussion

In our study, food intake, water/tea consumption (data 
not shown), body, EAT and liver weight remained unchanged 
among the groups. However, RAT weight was significantly 
higher in mice submitted to HC diet. These findings are 
consistent with previous studies, demonstrating that rats 
fed a powdered Purina Chow diet containing corn oil and 
condensed milk exhibited increased body fat accompanied 
by an elevated cell number in retroperitoneal and inguinal, 
but not epididymal, fat pads [32]. Similarly, Oliveira MC, et 
al. [29] showed that an HC diet induces rapid adipose tissue 
expansion without significant changes in overall body weight.

We hypothesized that Rooibos supplementation 
might prevent adipose tissue expansion in the HCR and 
HCRT groups, given that its phenolic compounds inhibit 
adipogenesis-related transcription factors in vitro [33]. 
However, this effect was not observed in vivo, likely due 
to Rooibos compound digestion, metabolism, and lower 
systemic bioavailability compared to direct in vitro exposure. 
Supporting this, Kotzé-Hörstmann LM, et al. [34] found that 
green Rooibos extract did not prevent visceral adiposity or 
affect body weight in animals on high-calorie diets. Further 
research, including dose optimization and direct cell and 
animal experiments comparisons, is needed to better define 
Rooibos’s impact on adipose tissue metabolism.

Given the increase in retroperitoneal adipose tissue 
(RAT), we examined its potential impact on carbohydrate and 
lipid metabolism. The HC group showed elevated random 
blood glucose levels compared to control. Notably, Rooibos 
supplementation (HCR and HCRT groups) significantly 
lowered glycemia at 60 and 120 minutes during the glucose 
tolerance test (GTT) versus the HC group. These results 
suggest that the HC diet induces insulin resistance, while 
Rooibos may improve insulin sensitivity and glucose uptake.

Diets high in simple carbohydrates, like the HC diet, cause 
rapid fat gain linked to metabolic problems such as insulin 
resistance and inflammation [29]. Fat tissue expansion 
attracts macrophages that release pro-inflammatory 
cytokines (IL-6, TNF-α, etc.) and lower adiponectin, an 
anti-inflammatory hormone that normally protects against 
insulin resistance [35,36]. These inflammatory signals, 
especially TNF-α, disrupt insulin signaling by reducing 
GLUT4 and IRS function, worsening glucose intolerance [37]. 
Given these mechanisms, we propose that the improvement 
in glucose metabolism observed with Rooibos treatment in 
HC diet-fed animals may be mediated, at least in part, by its 
anti-inflammatory properties. Rooibos contains bioactive 
compounds like aspalathin and quercetin that exert anti-
inflammatory effects by downregulating TNF-α, IL-6, NF-κB 
expression, and inhibiting protein kinases and arachidonic 

acid pathway enzymes [36,38]. Although in our study we 
did not observe an increase in the proinflammatory cytokine 
IL-6 we found an increase in TNF-α levels in the HC group, 
which were reduced in mice treated with Rooibos tea. The 
lack of change in IL-6 levels suggesting limited systemic 
inflammatory response in this model [39,40]. Additionally, 
aspalathin and nothofagin inhibit SGLT2, reducing renal 
glucose reabsorption and lowering blood glucose levels [41]. 
Rooibos-derived flavones also inhibit hepatic α-glucosidase 
more effectively than acarbose, limiting intestinal glucose 
absorption and postprandial hyperglycemia [41]. Moreover, 
phenylpyruvic acid from Rooibos may protect pancreatic 
β-cells by reducing apoptosis or stimulating neogenesis, 
potentially enhancing insulin secretion and glycemic control 
[37,41].

Regarding lipid metabolism, serum lipid analysis 
revealed no significant differences in TAG between control (C) 
and HC groups. However, TC levels increased in the HC group, 
consistent with the known effects of refined carbohydrates 
on insulin resistance, lipogenesis, and inflammatory 
pathways [29]. Rooibos tea reduced TAG levels, likely due 
to its bioactive compounds, as aspalathin, which activates 
AMPK and enhances β-oxidation, and quercetin, which exerts 
anti-inflammatory and anti-atherogenic effects [36,38].

Hepatic inflammation typically involves increased 
cytokines like IL-1β, IL-6, IL-12, and TNF-α from adipocytes, 
Kupffer cells, and steatotic hepatocytes, leading to fibrosis and 
liver injury, however no significant TNFα and IL-6 elevation 
was detected in liver from HC group. Findings imply that 
the local inflammatory response in this model is relatively 
limited [39,40-43]. However, Rooibos supplementation 
effectively reduced TNF-α levels in liver, aligning with 
findings from LPS-induced liver injury models [44]. This anti-
inflammatory effect is likely mediated by Rooibos flavonoids 
(e.g.: luteolin, rutin, and quercetin) which inhibit Kupffer 
cell activation and pro-inflammatory cytokine synthesis 
[44]. No significant changes in IL-10 levels were observed in 
either serum or hepatic tissue suggesting that Rooibos acts 
mainly by suppressing pro-inflammatory mediators rather 
than enhancing anti-inflammatory pathways, as similarly 
reported in other tissues after Rooibos treatment [45].

Oxidative stress, a key contributor to metabolic 
dysfunction, was evidenced in the HC group by elevated 
hepatic nitric oxide (NO) levels, reflecting oxidative damage, 
as similarly reported with hypercaloric diets [46]. Rooibos 
supplementation significantly reduced NO levels in HCR 
and HCRT groups, indicating antioxidant activity. This effect 
is consistent with prior findings on Rooibos flavonoids, 
especially aspalathin, known for their potent free radical-
scavenging properties [47,48]. The antioxidant properties of 
Rooibos flavonoids may support improved glycemic control 
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by mitigating oxidative stress, a known driver of insulin 
resistance [36,47,48].

Although liver weight remained unchanged, hepatic 
triglyceride levels were elevated in HC and HCR groups, 
pointing to disrupted lipid metabolism, consistent with 
reports linking high-glycemic diets to hepatic lipogenesis, 
oxidative stress, and injury [49]. Histological analysis 
revealed alterations in the HC group, characterized by 
swollen hepatocytes, glycogen accumulation, and lipid 
vacuoles, confirming progression toward MAFLD via de 
novo lipogenesis and fatty acid overload [50-52]. Elevated 
hepatic TNF-α and NO levels further supported the presence 
of MAFLD, as previously observed in high-fat diet models 
[10,53]. Notably, Rooibos-treated animals, particularly the 
HCR group, showed histological improvement, aligning 
with studies reporting its protective effects against diet-
induced steatosis, likely via polyphenols such as resveratrol 
and quercetin that enhance lipid oxidation and suppress 
lipogenesis [54-57]. Overall, our data suggest that earlier 
and sustained Rooibos supplementation may offer greater 
protection against diet-induced hepatic injury, favoring 
prevention over reversal of established pathology.

 
Conclusion

In conclusion, Rooibos tea effectively countered key 
biochemical, immunological, and hepatic alterations 
induced by a high-carbohydrate diet, likely due to its potent 
antioxidant, anti-inflammatory, and hepatoprotective 
properties. With its low cost, safety, and broad spectrum of 
bioactivity, Rooibos stands out as a promising and accessible 
adjuvant strategy for the prevention and management 
of metabolic and liver-related disorders. Future studies 
optimizing dosage, treatment duration, and delivery methods 
could further enhance its therapeutic potential.
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