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Abstract 

Chronic diseases are stimulated in the womb through adaptations acquired by the fetus in response to malnutrition. 

Maternal malnutrition during early pregnancy, in relation to low birth weight as well as uterine growth restriction, may 

adversely influence offspring metabolism and health. Parental nutritional imbalance, either through global nutritional 

manipulation or deficiencies in specific nutrients, predisposes the offspring to metabolic disease. Exposure to 

environmental factors in early life can influence the developmental process as well as long-term health in humans. The 

famine affected fertility, weight gain during pregnancy, maternal blood pressure, infant size at birth and development of 

the central nervous system, are associated with an increased risk of adult-onset metabolic syndrome. The point to ponder 

over here is how these risk factors interact at the cellular level so as to cause disease? Here, epigenetic epidemiology 

enables researchers to explore critical links between genomic coding, modifiable exposures and the manifestation of the 

disease phenotype. Extensive epidemiologic studies have suggested that adult disease risk is associated with adverse 

environmental conditions (famines) to which the mother is exposed to early in development. 
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Introduction 

It is now widely acknowledged that the jeopardy of 
chronic diseases in adulthood may have their origins in 
the womb through adaptations made by the fetus in 
response to under-nutrition [1]. The effects of under-
nutrition depend upon the time of its occurrence during 
gestation and the organs as well as the systems that 
develop during that critical time window. The fetus being 
vulnerable to various factors like the physical and mental 
stress of the mother, environmental exposure, physical 

activity and nutrition becomes susceptible to long term 
health risks which develop after birth [2]. The impact of 
maternal nutrition on the etiology of chronic diseases in 
offspring in their adult life has been well established by 
various epidemiological studies [3]. Nutritional 
imbalances, such as under and over-nutrition during 
critical periods of gestation, induce persistent 
physiological alterations.  

 
Metabolic disorders such as obesity and type 2 

diabetes have reached epidemic rates in most developed 
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and developing countries, but little is known about the 
role of DNA methylation in metabolic disease 
pathogenesis [4,5]. The Syndrome X or Metabolic 
Syndrome (MetS), is a cluster of phenotypes that include 
increased abdominal fat mass, impaired insulin 
responsiveness, dyslipidemia with increased plasma 
triglycerides and decreased HDL-cholesterol increased 
blood pressure and elevated circulating cytokines and 
adipokines [6]. The mechanisms by which Syndrome X 
leads to the development of insulin resistance, 
dyslipidemia and associated phenotypes are poorly 
understood in molecular level, but necessarily involve 
long-term changes in gene regulation and gene expression. 
Earlier studies reported that the prevalence of MetS or 
Syndrome X associated factors are relatively low during 
early childhood but increases during adolescence and 
thereafter tends to persist into adulthood [7-11]. Several 
lines of evidence support a role for non-genetic factors in 
the development of insulin-resistance and indicate that 
epigenetic factors, possibly through DNA methylation, 
may play a role in metabolic diseases. Epigenetics literally 
means "above" or "on top of" genetics. These 
modifications do not change the DNA sequence, but they 
affect how cells "read" genes. Epigenetics is the study of 
mitotically heritable alterations in gene expression 
potential that are not mediated by changes in DNA 
sequence and it is in the field of genetics of cellular and 
physiological phenotypic trait variations that are caused 
by external or environmental factors that switch genes on 
and off [12,13]. 

 

Epigenetic and Metabolic Syndrome 

In the past decade, there has been a significant 
increase in the number of epidemiological studies 
investigating metabolic risk factors and outcomes in 
relation to DNA methylation, but many gaps stay behind 
in our understanding of the underlying cause. Previous 
studies reported that environmental factors can alter 
epigenetic features and change the future behavior of 
target cells and may play a role in susceptibility to MetS as 
well as other chronic diseases [14-16]. In humans this non 
genetic influences to change the pattern of gene 
expression are heritable across more than one generation 
and such transgenerational tradition of epigenetic states 
may contribute to the hereditary risk of various metabolic 
disorders [17-21]. DNA methylation is one of the most 
extensively studied epigenetic mechanisms and plays an 
important role in the process of development and 
differentiation [22]. It is also known that DNA 
methylation patterns continue to change after birth, at 

least partly in response to environmental influences [23-
25]. There is evidence from both animal and human 
studies that prenatal alimentary impairment can 
perpetually modify DNA methylation at several loci and 
these modifications have a pivotal role in the observed 
alteration of imminent risk of chronic diseases like 
obesity, insulin resistance and diabetes [26-32]. 

  
A family cohort study of Northern European descent, 

observed a significant portion of the epigenome is 
heritable, including genes known to play roles in obesity 
and Met S [33]. Increasing evidence shows that 
environment-induced genetic effects can pass 
transgenerationally without changes occurring in the 
primary DNA sequence and this epigenetic trait can be 
transmitted up to the fifth generation or more [34-36]. 
Some of the familial risks of MetS may be epigenetic in 
origin. One of the best-characterized epigenetically 
regulated loci is insulin-like growth factor II (IGF2) gene; 
is characterized by alabel methylation pattern dependent 
on the nutritional stimuli received by the growing 
organism during early life development [37,38]. IGF2 is a 
key factor in human growth and development and is 
maternally imprinted [39]. Further, childhood diet could 
contribute to IGF2 loss of imprinting in individuals [38]. 

Imprinting is preserved by the hypomethylation of 
differentially methylated region (DMR) of IGF2, which 
ultimately progress for bi-allelic expression of that gene 
[26,40]. A recent investigation disclosed that paternal pre-
conceptual obesity was associated with hypomethylation 
of IGF2 in newborns [19]. 

 
There are several studies on humans and animals 

which suggest that the early nutrition and poor growth in-
utero is associated with an increased risk of coronary 
disease, hypertension, type 2 diabetes and obesity in 
adulthood [41,42]. Maternal nutritional imbalance was 
shown to exhibit transgenerational effects through 
epigenetic and metabolic changes [43,44] and the most 
consistently-observed epigenetic association with 
adiposity has been with that of methylation at the 
IGF2/H19 imprinting region [45,46]. Higher methylation 
levels at specific genes, including IL10, LEP, ABCA1, 
GNASAS and MEG3, were closely linked with nutrition 
metabolism, cardiovascular function and inflammation 
[47]. 
 

Famine and Metabolic Syndrome 

The hardships of war (World War II) invoked thought 
that the body's reaction to starvation could be genetic. 
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However, at that time, it was not known that starvation of 
pregnant women affected their children. At present, with 
advanced technological aids as well as extensive 
knowledge, researchers have delved into the secrecy of 
inheriting life experiences. A panel of investigators 
discovered that the mothers who have experienced 
famine conditions undergo a change in their DNA, which 
passes on for up to three generations. It has been further 
speculated that the mechanism functions as a way for 
parents to "prepare their progeny for hardships similar to 
the ones that they have experienced”, which would give 
them a better chance of survival. The first study about the 
possible association between prenatal exposure to famine 
and health reported during 1972-1975 used the “Dutch 
Famine 1943” to analyze adult health outcomes in 
relation to specific periods of gestation [48,49]. However, 
another study reported that exposure to famine in early 
and mid-gestation was associated with the prevalence of 
obesity [50]. Findings of The Dutch Hunger Winter Family 
Study suggest that the effects of famine can be observed 
some sixty years later [51]. 

 
The famine affected fertility, weight gain during 

pregnancy, maternal blood pressure, infant size at birth 
and central nervous system development are associated 
with an increased risk of adult-onset metabolic syndrome 
post birth [49,52-56]. It can be took into consideration 
that the famine condition composes a ‘natural experiment’ 
in which outpouring to famine was attributed based upon 
an individual’s birth place and time.51 This design was 
used to investigate how maternal undernutrition during 
specific gestational time windows may affect the 
subsequent life course of the offspring who has 
experienced the famine in-utero and their next generation. 
One of the most significant studies was conducted on 
children who were born to women exposed to severe 
undernutrition during pregnancy as a result of the Dutch 
Hunger Winter during World War II. The study reported 
reduced methylation of the imprinted gene IGF2 in these 
individuals during adulthood [26]. Two well-cited human 
population studies are those of the Dutch Famine cohort 
[57-59] and Overkalix cohorts [60], where both cohorts 
have been linked to transmission of ill-health into the F2 
generation and the fetal origins hypothesis is broadly 
supported by the findings of the Dutch Famine birth 
cohort study. Another study from Northern Europe 
proposed that poor social conditions during childhood 
may become potent risk factors for obesity, diabetes and 

other cardiovascular diseases (CVDs) in later life [61]. 
 

Upshot 

Maternal under-nutrition during early pregnancy, in 
relation to low birth weight and uterine growth 
restriction, may adversely influence offspring metabolic 
health and are associated with an increased risk of adult-
onset metabolic syndrome. On the other hand poor 
nutrition during pregnancy or post natal development 
may be a risk factor for irreversible health issues 
including obesity, type 2 diabetes, hypertension 
hypercholesterolemia and other metabolic diseases in 
adult life (Figure 1). To evaluate the function of maternal 
health and nourishment in the instigation and 
advancement of ailments in childhood as well as 
adulthood, it is necessary to identify the physiological and 
pathological roles of specific nutrients on the epigenome. 
An increased insight into dietary interventions in-utero as 
well as early life could modulate risk of diseases through 
epigenomic alteration. Early embryonic development is of 
special interest in this respect because it is a crucial 
period for establishing and maintaining epigenetic marks 
[62]. Gene-gene and gene-environment interaction are 
important processes for initiation of particular symptoms 
associated with metabolic syndrome and its progression. 
Mainly the explanation for the adaptation to the 
environment could be used as an example for epigenetics, 
especially, if epigenetic trans-generational inheritance 
exists [63,64]. However, a study systematically explained 
with the schematic diagram relating the genome, 
epigenome and environment with respect to trans-
generational phenotypic characters [36]. 

 
The "Barker hypothesis” [65] or "developmental 

programming hypothesis” has opened up a new research 
paradigm for understanding chronic disease risk that has 
moved beyond the simplistic explanations based on 
genetic and lifestyle influences. A more integrated 
approach has developed which examines the relations 
between genetic inheritance and lifestyle factors, thereby 
incorporating the role of developmental plasticity i.e., the 
ability of changes in gene function to generate a range of 
phenotypic outcomes based on environmental exposures 
[66]. The hypothesis suggests that the influences of 
environment during early life of the offspring may induce 
susceptibility to the onset of obesity and related 
metabolic disorders during subsequent life post birth.  
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Figure 1: Famine, maternal malnutrition, developmental plasticity and risk of metabolic disease. 
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