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Abstract

While there are many online data dashboards on COVID-19, there are few analytics available to the general public to help 
them gain a deeper insight into the COVID-19 pandemic and evaluate the effectiveness of social intervention measures. To 
address the issue, this study describes the methods underlying the development of an online COVID-19 Epidemic Calculator 
for tracking COVID-19 growth parameters. From publicly available infection case and death data, the calculator is used to 
estimate the effective reproduction number, doubling time, final epidemic size, and death toll. As a case study, we analyzed the 
results for Singapore during the “Circuit breaker” period from April 7, 2020 to the end of May 2020. The calculator shows that 
the stringent measures imposed have an immediate effect of rapidly slowing down the spread of the coronavirus. After about 
two weeks, the effective reproduction number reduced to about 1.0. Since then, the number has been fluctuating around 1.0 
for more than a month. The COVID-19 Epidemic Calculator is available in the form of an online Google Sheet and the results 
are presented as Tableau Public dashboards at www.cv19.one. By making the calculator readily accessible online, the public 
can have a tool to meaningfully assess the effectiveness of measures to control the pandemic.
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Introduction

As countries around the world take drastic measures to 
contain the COVID-19 pandemic, people need to understand 
the effectiveness of such interventions. Making sense of 
epidemiological data can be challenging given confusing and 
overlapping terminology. Raw data and statistics on infection 
numbers (Figure 1) do not directly help answer the following 
questions: 
•	 Are social distancing measures working?
•	 How much longer does it take to flatten the curve?
•	 What will be the final death toll?

 This paper describes the methods underlying an online 
COVID-19 Epidemic Calculator for tracking and estimating 
COVID-19 growth parameters, including reproduction 
number, doubling time, final epidemic size, and death toll. 
These methods are illustrated using the case example of 
Singapore. We demonstrate how the calculator can reveal the 
effect of imposing strict social distancing measures (“Circuit 
breaker”) from April 7, 2020 that is not apparent from just 
looking at infection numbers.

While our methodology is similar in certain aspects to 
several freely available software packages and programming 
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codes for calculating the effective reproduction number 
[2-5], we differ from those work because we implement 
real-time, data-driven calculations in the widely used Excel 
spreadsheet, with sub-minute execution time, even for 
calculating a 4-month, 100-country data set. Furthermore, 

this calculator is readily available as an online Google Sheet 
to facilitate sharing and collaboration. The input data for the 
calculator is obtained from publicly available sources [6-8] 
and is automatically updated daily.

Figure 1: Total Confirmed Cases in Singapore [1].

Introduction to Terminology

Figure 2 identifies the different overlapping terms used 
in epidemiology and illustrates the timeline for the various 
stages of infection. These terms and variables will be used 
for calculating parameters that can help us understand and 
monitor the spread of the COVID-19 infection in a country. 

Exposed is the state at which an individual first becomes 
infected but is not yet contagious. The latent period is the 
time from being infected (exposed) to becoming contagious. 
An infected person can be contagious even before the onset 
of symptoms. Data suggests that some people could have 
infected others 1 to 3 days before they developed symptoms 
[9,10]. 

Figure 2: Timeline of infection stages with typical parameter estimates for COVID-19 in Singapore.

The incubation period is the time from exposed to 
the onset of symptoms. The mean incubation period for 
COVID-19 is estimated to be 5 days [11,12]. The infectious 
period is the time between becoming contagious to the time 
of removal or recovery. Hence, it is the difference between 

the time of removal and the latent period (Tremoved–Tlatent). 

In Singapore, the 14-day average time from the onset of 
symptoms to removal ranges from 1.5 to 6 days after the start 
of the Circuit breaker on April 7, 2020 (Figure 3). The serial 
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interval is the time when a secondary infection is generated. 
For COVID-19 in Singapore, the serial interval between 
transmission pairs ranges between 3 days and 8 days [13]. 

Other researchers have reported serial intervals within the 
same range [12,14-16].

Figure 3: Average number of days from onset of symptoms to isolation for community unlinked cases in Singapore.

Critical Parameters

The rate of infection growth in a population can 
be estimated using the effective reproduction number. 
The effective reproduction number is the number of 
secondary cases directly being infected by a primary case 
in a population. Social distancing measures should reduce 
the spread of infection and this would be reflected by a 
reduction in the effective reproduction number. Hence, 
monitoring the effective reproduction number over time 
will allow us to evaluate if social distancing measures or any 
other interventions are working. We will demonstrate how 
to estimate the effective reproduction number using a non-
parametric approach, as well as a Bayesian approach. We will 
also show how to derive estimates of dates of actual symptom 
onset and dates of being exposed which are important for 
our estimation of the effective reproduction number.

Another parameter that can be used to estimate the rate 
of infection growth is the doubling time. This is the time for 
the total number of cases to double in a population, given 
the current infection rate. Hence, effective interventions to 
curb the spread of an infection should increase the doubling 
time. We will estimate the doubling time by assuming 
an exponential growth model [17]. Estimating the time 
needed to flatten an epidemic curve is an important part 
of forecasting the scope of an infectious disease outbreak. 
When new cases are significantly reduced, social distancing 
restrictions can be relaxed and other less intrusive measures 
can be put in place. In this study, we will show how logistic 
and Gompertz models can be used for forecasting the future 
number of cases and deaths over time using only publicly 
available data. These numbers will allow us to gauge the 
vulnerability of the population and quantify the direct health 
impact of COVID-19.

Since these parameters are useful to help the general 

public understand about the spread of COVID-19 in their 
countries, as well as in other countries and regions, the 
objective of this research study is to develop a readily 
available online COVID-19 Epidemic Calculator to provide 
estimates of the critical parameters described here. The 
interested public can access this online calculator to gain 
a deeper insight into the COVID-19 pandemic, as well as to 
evaluate the effectiveness of a range of public health and 
social intervention measures [18].

Methodology

Method for Calculating the Effective 
Reproduction Number for Estimating How Fast 
COVID-19 is Spreading in a Country

Step 1: Deriving symptom onset dates from confirmation 
dates

The daily number of reported cases is partly dependent 
on the number of tests conducted, which may be variable 
due to factors such as testing capacity and the day of week. 
To account for this variation, we perform a running 7-day 
average of test cases. Other methods of applying a smoothing 
filter to the time series may be used if appropriate.

Another issue is the delay between the onset of 
symptoms and case confirmation (removal or isolation). 
Case onset dates can be derived if records of onset-to-
confirmation dates are available for every individual (Figure 
3). Otherwise, case onset dates can be estimated by using the 
following procedure.

•	 For each date, distribute case counts back in time 
according to a Poisson distribution with a mean of 3 days 
(symptom onset to removal) as illustrated in Figure 4. 

•	 Sum the back distributed case counts for each date to 
derive the onset curve as shown in Figure 5.

https://medwinpublishers.com/EIJ/
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Figure 4: Distributing case counts back in time.

 Figure 5: The onset curve estimates the cases during the onset of symptoms.

Distributing reported cases back in time and recreating 
the onset curve result in a “right-censored” time series. This 
means that there are onset cases close to the present date 
that are yet to be reported. We correct this by estimating 
the percentage of onset cases on Day (t-a) that have not yet 
been reported by today (Day t). We can use the cumulative 
distribution function of the Poisson “onset-to-removed” 
distribution to adjust for the number of onset cases, thus 

removing right censoring [19]. 

Adjusted onset:

Adjusted onset = 
(  from present date)

Onset
P Delay Days≤

Figure 6: Adjusting for right-censoring.
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Consider an example illustrated in Figure 6. Three days 
ago, there were 470 reported onset cases. This represents 
the fraction of the actual number reported over the next 3 
days. This fraction is equal to the value of the cumulative 
distribution function of our Poisson distribution at Day 3, 

which is 65%. Hence, the current count of onset on that day 
represents 65% of the actual total. After adjustment, the 
actual total is estimated to be (1/0.65) of 470, which is 723. 
Figure 7 shows the adjusted onset curve.

Figure 7: Onset numbers close to the present date are adjusted for right censoring.

Step 2: Deriving infection (exposed) dates from onset 
dates

A similar procedure as in Step 1 can be applied to the 
onset counts to derive the infection (exposed) time series. 

Figure 8 shows the adjusted exposed time series where the 
incubation period (from exposed to symptom onset) follows 
a Poisson distribution with a mean of 5 days.

 

Figure 8: The Adjusted Exposed curve is derived using a Poisson distribution with a mean incubation period of 5 days.

Step 3: Estimating the Effective Reproduction Number, 
R(t)

The basic reproduction number, R0, is the expected 
number of infections directly generated by one case given 
that all individuals are equally susceptible. As the infection 
spreads, the susceptibility of the population decreases. The 
effective reproduction number, R(t), is related to the basic 
reproduction number, R0, by R(t)=R0S(t), where S(t) is the 
average susceptibility of the population. R(t) is often used 

as an indicator of the effectiveness of interventions, such as 
social distancing measures, to contain the spread of a virus. 
If R(t) is greater than 1.0, the infection is growing at an 
exponential rate. If R(t) is at 1.0, the spread is sustained at a 
linear rate. If R(t) is less than 1.0, the infection is spreading 
at a slower pace and will eventually die out. Although R(t) 
cannot be measured directly, it can be estimated in different 
ways. We describe two methods that can be implemented in 
a spreadsheet without any programming codes.
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Bayesian Approach: The Bayesian approach allows us to 
continuously update our estimate of a set of parameters, Θ, 
as more data becomes available. 

( | ). ( )( | data)
( )

P data PP
P data

Θ Θ
Θ =

P(Θ), the prior distribution, represents our prior 
estimates about the true value of Θ. P(data|Θ) is the 
likelihood distribution. It is also often written as L(Θ|data) 
which means the probability of observing the data given 
Θ. For the method to work, it is necessary to calculate the 
likelihood distribution for all possible values of Θ. P(data) 
is the model evidence and it is the same for all possible 
hypotheses (values of Θ) being considered. P(Θ│data) is the 
posterior distribution and represents our updated estimate 
of the value of Θ given the observed data [20].

The main objective of Bayesian inference is to calculate 
the posterior distribution of our parameters using our prior 
beliefs updated with our likelihood. From the posterior 
distribution, we can determine the most likely values of Θ 
given the observed data. Since we are usually only interested 
in relative probabilities of different hypotheses, P(data) can 
be left out of the calculation and we write the model form of 
Bayes’ theorem as

( | data) ( | ). ( )P P data PΘ ∝ Θ Θ  (1)

Where ∝ means “proportional to”. For estimating Rt, the 
Bayes’ theorem that we use is 

( \ k ) ( \ ). ( )t t t t tP R P k R P R∝  (2)

Where the data, kt, is the daily number of cases, and the 
parameter, Rt, is the effective reproduction number.
Equation (4) is updated every day by using yesterday’s 
posterior, P(R(t-1)│k(t-1)), to be today’s prior P(Rt). On day two, 
the equation becomes

2 2 2 2 1 1 1( \ k ) ( \ ). ( \ ). ( )P R P k R P k R P R∝  (3)
So generally,

1
1

( | k ) ( ). (k | )
T

T T t t
t

P R P R P R
=

∝ Π  (4)

Assuming a uniform starting prior P(R1), this reduces to:

1
( | k ) (k | )

T

T T t t
t

P R P R
=

∝Π  (5)

Note that the posterior on any given day is equally 
influenced by the distant past as much as the recent day. This 
is fine if we are estimating a static parameter that does not 
change with time. However, the value of Rt is dynamic and 
is more closely related to recent values than older ones. To 
address this issue, we can adopt Systrom’s approach [2] of 
only incorporating the last m days of the likelihood function:

1
( | k ) (k | )

T

T T t t
t m

P R P R
= −

∝ Π  (6)

Bettencourt & Ribeiro’s Likelihood Function: To calculate 
the likelihood function L(Rt│kt)=P(kt│Rt), we first assume 
that the number of new infections on any given day can be 
described by a Poisson probability distribution with a mean 
of λ. The probability of seeing k new cases is

( | )
!

keP k
k

λλλ
−

∝  (7)

Bettencourt & Ribeiro [21] has derived an equation relating 
Rt to λ.

(R 1)
1

t
tk eγλ −
−=  (8)

Where γ is the reciprocal of the serial interval (see Figure 2). 
Figure 9 shows the variation of λ with Rt for some values of 
kt-1.

Figure 9: Variation of λ with Rt given kt-1.
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Equations (9) and (10) allow us to reformulate the likelihood 
function as a Poisson distribution, parameterized by fixing k 
and varying Rt.

( | ) ( | )
!

k

t t
eL R k P k R
k

λλ −

= =  (9)

Figure 10 shows that as k increases, the peak value of 
the likelihood function L(Rt|k) increases and the distribution 
becomes less spread out about. This means that as the 
number of infections increases the confidence of our Rt 
estimate should improve.

 Figure 10: Variation of L(Rt|k) with Rt given k.

In evaluating the posteriors, it is more convenient to use 
the logarithm of the likelihood function.

( 1)
1 1ln( ( | )) [ln( ) (R 1)] k ln( !)tR

t t t tL R k k k e kγλ −
− −= + − − −  (10)

To perform the Bayesian update, we can do a sum of the log-
likelihoods over the last m days and then exponentiate to get 
the likelihood. From equations (8) and (12),

( 1)
1 1ln( ( | )) ln( ( | )) constant k [ln( ) (R 1)] k e constantt

T T
R

t T t t t t t t
t T m t T m

P R k L R k k γγ −
− −

= − = −

   = + = + − − +   
   
∑ ∑

 

(11)
From the posterior distribution (Figure 11) we can also 
obtain the confidence interval for Rt.

Figure 11: Variation of posterior P(Rt│k) with Rt.

Non-Parametric Approach: Wallinga J, et al. [22,23] 
have developed a non-parametric method to derive the 
reproduction number from the exponential growth rate, 

( )( )
( ) ( )

o

c tR t
c t a w a da

∞=
−∫

(12)

Where c(t) is the rate of new infections at time t, and w(a) is 
the probability density function of the serial interval (Figure 
2). 

The serial interval is the time from being infected to 
generating a secondary infection. We assume a gamma 
distribution with a mean serial interval of 7 days and a 
peak (most infectious) at Day 4 (Figure 12). This accounts 
for a latent period where the exposed individual is not yet 
infectious. Equation (14) can be evaluated in a spreadsheet 
using the infection data derived above and a numerical 
integration scheme. 
 

Figure 12: A gamma distribution calculated using the 
GAMMA.DIST function in Excel.
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Method for Calculating the Doubling Time for 
Estimating How Fast COVID-19 is Spreading in 
a Country

Another parameter often used to measure infection rate 
in a population is the doubling time, defined as the time for 
cumulative cases to double based on the current growth rate 
[24]. 

0
( )

0 0

( )

( ) 2d

rt

r t T rt
d

C t C e

C t T C e C e+

=

+ = =
 (13)

Where C0 is the initial number of cases, Td is the doubling time, 
and r is the exponential growth rate. Taking the logarithm on 
both sides of the equation,

0

0 0

ln( ( )) ln( )
ln( ( )) ln( ) ( ) ln(2) ln( )

ln(2)
d d

d

C t C rt
C t T C r t T C rt

T
r

= +
+ = + + = + +

=

 (14)

As the growth rate slows, the doubling time increases 
accordingly. Note that the gradient of the ln(C(t)) curve is 
equal to r. Time-varying estimates of the doubling time can 
be made with a 7-day sliding window by iteratively fitting a 
linear regression model to ln(C(t)).

Method for Forecasting the Final Total Number 
of Cases and Deaths

When the growth rate is slowing down (Rt<1), we can 
project the final total cases and death counts by fitting 
publicly available data to a logistic model. The logistic model 
is often used to describe the shape of the cumulative epidemic 
curve (Figure 13) where the number of infected cases grow 
exponentially at first, then slows down, and finally flattens to 
a maximum limit. The final epidemic size can be estimated 
based on this slowing growth.

Figure 13: A logistic function. L = 1, k = 1, x0 = 5.

For our application, the total number of cases at time t 
can be approximated by Ma J [25]

0

0

0 0

( )
( )

F

F

F
rC t

C C
F

C CC t
C C C e

− −
−

=

+ −

(15)

Where r is the exponential growth rate, C0 and CF are the 
initial and final numbers, respectively. 

To find the best curve fit to the data and an estimate 
for CF, we use the maximum likelihood method. We assume 
that the number of reported cases, xi, at time, ti, follows the 
Poisson distribution and has a mean of μi, where μi is the 
calculated number of cases at time, ti. 

(X )
!

ix
i

i i
i

eP x
x

µµ −

= =  (16)

Then, the log-likelihood function to be maximized is
1

0
ln

n

i i i
i

xµ µ
−

=

− +∑ (17)

We choose the parameter values for CF and r that 
maximize the log-likelihood function. This can be done 
by using the Solver function in Excel. The parameter CF is 
estimated over a rolling window of, say 60 days, to obtain a 
moving update. See Figure 14.

Some research [26-29] have also suggested that another 
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parametric model that can be used for forecasting COVID-19 
case or death count is the Gompertz function, defined as 

0( )
te

F
F

CC t C
C

γ−

 
=  

 
(18)

It is a special case of the generalized logistic function. 
The final value asymptote of the function is approached more 
slowly by the curve than the initial value asymptote, unlike 
the simple logistic function in which both asymptotes are 
approached by the curve symmetrically. For example, Figure 
14 shows the cumulative death overtime for a few countries 
that clearly illustrate the asymmetry.

 

Figure 14: Cumulative COVID-19 death for Singapore, UK, Brazil and USA.

Results and Discussion

Evaluating the Effectiveness of Social Distancing 
Measures using Effective Reproduction Number

Figures 15 and 16 show the most likely values of Rt 
and the confidence interval over time for Singapore during 
the Circuit breaker period calculated using the Bayesian 

approach and non-parametric approach, respectively. The 
serial interval is assumed to be a Gamma distribution with 
a mean of 7 days and a mode of 4 days (standard deviation 
= 4.6 days). We can see that Rt changes with time and the 
confidence interval narrows with more data. The results are 
generally in good agreement with those calculated using the 
EpiEstim code (Figure 17) [3,4]. 

Figure 15: Effective reproduction number Rt.
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Figure 16: Rt against time for Singapore during the Circuit breaker period.

Figure 17: Results from EpiEstim.

The results clearly show that the Circuit breaker 
measures imposed from April 7, 2020 have an immediate 
effect of rapidly slowing down the spread of COVID-19. We 
can also see that Rt settled to around 1.0 after about two 
weeks. Since then, the infection rate has remained sustained 

for more than a month. Given that dormitory residents make 
up the majority of the infected individuals, it can be concluded 
that individuals continue to infect others with a reproductive 
ratio of approximately 1 to 1 in that setting during the Circuit 
Breaker period as depicted in Figure 18 [30].

Figure 18: Effective reproduction number Rt. started to rise again after the end of the circuit breaker in Singapore.
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One problem with the calculation method is that it can 
only provide a good estimate for the reproduction number 
up to about one to two weeks before the current date. This 
is due to the time lag between infection and confirmation. As 
we get closer to the present day, the calculated mean value 
of Rt always tends to 1. For example, suppose that today is 
April 10, 2020, and case data is only available up to this date. 
Figure 19a shows that the calculated Rt values after April 3 
do not reflect the true values as shown in Figure 18.
 

Figure 19a: Rt. tends to 1 as it approaches the current date.

Figure 19b: Rt. adjusted by extrapolating next week’s 
cases from this week’s data.

Since the calculation cannot provide reliable estimates 
for current Rt based on real time data, it somewhat limits 
the usefulness of the metric for tracking infection spread. To 
alleviate this limitation, we do an exponential regression on 
the latest week’s case data and project the trend forward by 
one week (Figure 20). The results, shown in Figure 19b, give 
a much better estimate for the current values of Rt.

Figure 20: An exponential trend line is used to project new cases forward by one week. 

Evaluating the Effectiveness of Social Distancing 
Measures using Doubling Time

Figure 21 shows the log plot of the accumulated cases and 
the doubling time calculated using the method described 

in 2.2. Again, we can directly see the positive effect of the 
Circuit breaker measures that started on April 7, 2020. From 
a low point of about 5 days the doubling time has increased 
to about 4 weeks in slightly more than a month (Figure 22) 
[31,32].
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Figure 21: It is easier to see the pronounced effect of the Singapore Circuit breaker on a plot of the doubling time (right) than 
the accumulated cases plot (left).

Figure 22: Doubling time.

Although both the effective reproduction number and 
doubling time are directly related to the rate of infection 
growth, they provide us with different perspectives. The 
doubling time index has a time dimension. On the other 
hand, the effective reproduction number gives us a sense 
of the risk of an epidemic and whether interventions have 
brought it under control. Rt is useful in assessing in real time 

whether an infectious disease will persist. 

How Much Longer Does It Take To Flatten The 
Curve? Forecasting Final Case and Death Counts.

Figure 23 shows the projected cases for Singapore calculated 
according to the method described in 2.3 and using a two-
month data set.

Figure 23: Projected cases for Singapore based on a two-month dataset.
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Table 1 shows the forecasts for a few countries including 
Singapore and how they compare with the projections by 
the Institute for Health Metrics and Evaluation (IHME) [33] 
at University of Washington Medicine. The projections by 
the IHME are based on more complex analytics and take 
into account factors such as changes in social distancing 

measures, diagnostic capability, and hospital capacity. 
Given that we did not directly account for these factors, 
our forecasts of the total number of cases and deaths may 
be considered indicative only. Assuming current prevailing 
conditions in the populations, results from the COVID-19 
Epidemic Calculator are likely to be realistic estimates.

Country D0, initial death count on May 
20 2020

Total death for Nov 1 2020 by 
Gompertz function fit

IHME projection for Nov 1 
2020

Singapore 22 28 27

USA 97,222 186,285 219864
(141,969-284,123)

UK 35,704 47,105 51274
(48,025-60,078)

Brazil 18,894 134,781 177235
(81,623-191,443)

Table 1: A comparison of the projected total deaths from the COVID-19 calculator as at July 25 2020, using data from the last two 
months, and the Institute for Health Metrics and Evaluation (IHME).

Conclusion

This paper describes the methods underlying the online 
COVID-19 Epidemic Calculator for tracking COVID-19 growth 
parameters. From publicly available data, the calculator is 
used to estimate the distributions at time of symptom-onset 
and infection, effective reproduction number, doubling time, 
final epidemic size, and death toll for Singapore and other 
countries. The calculator and the associated graphs clearly 

show that the Circuit breaker measures imposed from April 
7, 2020 in Singapore had an immediate effect of rapidly 
slowing down the spread of the COVID-19. Additionally, the 
results also reveal that the effective reproduction number 
has settled to around 1.0 after about two weeks. Since 
then, it has remained at that level for more than a month. 
This indicates that the infection rate among the dormitory 
residents is sustained and not likely to be reduced until this 
group become less susceptible.

 

Figure 24: A visualization of the effective reproduction number for countries on a map. The size of each circle is proportional 
to the total number of infections. The color of the rings within a circle varies over time from red (R > 0) to white (R = 0) to blue 
(R < 0), reflecting the rate of growth of the virus.

The COVID-19 Epidemic Calculator is available in 
the form of an online Google Sheet [34,35] that imports 
daily infection data from the European Centre for Disease 

Prevention and Control [8]. The results are presented online 
as dashboards on Tableau Public (Figure 24) [36,37]. It 
has the advantage of fast execution time without the need 

https://medwinpublishers.com/EIJ/
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for any specialized software package or programming 
script. Users can also interact with the models by changing 
the parameters. Comparing with other similar work, our 
parameter estimates are found to be in good agreement with 
those estimated using different models and software. By 
making the COVID-19 Epidemic Calculator readily accessible 
online, it is hoped that the public and interested learners 
have the tool to meaningfully assess our effort in fighting 
COVID-19.
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