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Abstract

A contagion network forms as a subnetwork within a larger “social network” when actors become infected and transmit 
infections to others. Nodes represent infected actors, and links represent contact that resulted in transmitting the infection 
from one person to another. The result of random contact is a non-random contagion network. Simulation of an SIR contagion 
shows emergence of a scale-free micro-scale structure with degree and betweenness distributions that obey a power law. Thus, 
contagion networks are the result of mild self-organization of scale-free structure-both degree distribution and betweenness 
centrality distribution obey a power law. This surprising result reinforces public health policies that advocate contact tracing 
and testing as early and fast as possible. An effective counter measure, barring availability of a vaccine, is testing and contact 
tracing back in time as far as possible, to disrupt the emergence of a contagion network.
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Motivation

In Lewis TG, et al. [1] showed that predicting the size 
and duration of the covid-19 pandemic is nearly impossible 
due to variations in population, populating density, and 
public policies concerning social distancing rules as well as 
the politics of quarantine. In a second paper [2], the authors 
showed that uneven distribution of population is a major 
cause of surges and waves of infection. In both studies, and in 
other studies as well [3], methods and models for prediction 
of size and duration of epidemics are based on OLS (Optimal 
Least Squares) curve fitting of an idealized mathematical 
model to actual data. This approach seems rather ad hoc 
compared to understanding the basic processes of infection. 
The result is unreliable estimates of size and duration.
 

Mathematical models, such as the Kermack-McKendrick 
SIR model [4], attempt to represent the macro-scale model 
of contagion spreading as a function of time plus a handful of 

parameters such as infection rate and removal/recovery rate. 
They do not attempt to examine the micro-scale structure of 
epidemic spreading from person-to-person. At the micro-
scale, a contagion creates a contagion network with structure 
that emerges from non-structure or randomness. It is this 
emergent process and the resulting micro-scale structure 
of the network formed by infected people that concerns this 
study.

As it turns out, network structure emerges from random 
selection and chance infections from contact between 
infected and susceptible individuals. The nodes (actors) of 
this “social network” are infected individuals, and the links 
represent contact-infected actors passing the infection to 
other actors with a certain infection probability. The resulting 
network is not random. Rather, in this simulation study, we 
show that the resulting contagion network tends to be scale-
free [5]. That is, the emerged node degree distribution is 
long-tailed and is approximated by a power law ~ d-q, where 
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-q is an exponent, d is node degree and q is fractal dimension. 
The “amount of structure” or “scale-free-ness” is quantified 
by the spectral radius, ρ, of the resulting network. Spectral 
radius is the largest eigenvalue of the connection matrix.

As the disease spreads through a population, a scale-free 
contagion network emerges. Additionally, the betweenness 
distribution of the emerged contagion network also obeys a 
power law, further contributing to the claim that contagion 
networks form as a result of self-organization. We show that 
this effect is more pronounced as the contagion spreads more 
rapidly or for longer duration. In effect, contagion networks 
emerge from randomness. They exhibit a definite structure 
(entropy is reduced). The main contribution of this research 
is in identifying the emergence of micro-scale structure. 
The author believes this is the first attempt to characterize 
contagion networks in terms of emergence and note that 
contagion networks exhibit scale-free structure as a result. 
Knowing that scale-free structure emerges, add credibility to 
contact tracing as early in the epidemic as possible.

The Model

We assume an SIR (Susceptible-Infected-Recovered) 
process whereby infections spread at an infection rate given 
by input v, and infected actors remain infected for a short 
period of time given by Gaussian variate latency = µ ± stdDev, 
where µ is the mean value of latency, and stdDev is the 
standard deviation of the sampled latency. An infected actor 
cannot infect other actors, except during its latency period, 
[ti, ti + latency], where ti is the time of onset of infection of 
node i. That is, latency is sampled from a Normal distribution 
with mean = µ and standard deviation stdDev to simulate 
variations observed in reality.

The model is quite simple. Given a population of n 
susceptible actors, a constant infection rate, v, and an 
infected SEED actor chosen at random, perform the following 
heuristic until no additional susceptible actors are available 
to be infected. At the end of a trial run, Consequence
is the number of actors that have been infected.

1. Time = 0.
2. Set all actor latency times to µ ± stdDev.
3. Randomly selected actor SEED is initially infected.

a. Consequence = 1.
4. Repeat until done:

a. Randomly select an uninfected actor, A.
b. Infect A with probability v:
i. Connect SEED to A with a link.
ii. Mark A as infected.
iii. Increment Consequence by 1.
iv. Set SEED = A.
c. Increment Time.

5. End

This heuristic is not entirely satisfactory for simulation 
on a sequential computer, because the number of infected 
actors explodes as each generation of SEEDs branches out. 
Starting with one infected actor at Time = 0, there may be 
dozens of infected actors at Time = 1, and even more at 
Time = 2, etc. Each of these infected actors at Time t may 
infect other actors, simultaneously. We must simulate 
this concurrency without the results of one generation 
conflicting with the results of another generation. A simple 
Map-Reduce operation is employed to simulate concurrency 
on a sequential machine. Map-Reduce consist of two steps, 
•	 Mark future infected actors in the first scan of the entire 

network, and 
•	 In a second scan, change the state of marked actors to 

infected. This is the purpose of the visited flag on each 
actor node, below.

The steps for this on a sequential computer use variable 
visited to flag infected actors while delaying the actual state 
change to infected until all concurrent infections have been 
flagged. A timer is associated with each node to determine 
when it is in an infected mode and when it no longer can 
infect other actors. When timer counts down to zero, the 
infected node is no longer infectious.

The NW_doAddLink method connects the two nodes 
together when an infection occurs. Thus, a micro-structure 
emerges from randomness as the simulation progresses. 
This structure is measured by calculating the degree 
distribution and noting that it is long tailed. Additionally, we 
compute the betweenness distribution of all nodes, compose 
its distribution, and note that it is also long tailed. Hence, we 
have two strong indicators of self-organization as a result of 
the spread of a contagion.

The Java code for the enhanced simulation is shown 
below. This code is executed for each tick of the clock, Time = 
1, 2, 3, … maxTime. Results were averaged over 3 trials.

Infection rate determines the speed of spreading. 
Latency determines the ultimate number of infected cases. 
If latency is very large, infections rise exponentially and then 
level off when the entire population has been infected. This 
is illustrated in Figure 1, by the “no latency” curve which 
shows spreading to all actors. When latency is very small, 
spreading does not reach all actors before dying out, because 
in this model, actors can only be infected once. Furthermore, 
the number of infecting actors soon dies out, too, leaving no 
actor to infect others. Thus, latency controls the size of the 
epidemic, while infection rate controls the duration.
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Figure 1: Simulation results for epidemics without latency and with latency shows how latency affects the size of an epidemic. 
Without latency, the contagion quickly saturates the population. With latency = 10±2, infecting actors are rendered non-
infecting before the entire population is infected. The Bass diffusion model using OLS parameters is shown as an excellent 
macro-scale model of infection spreading regardless of latency or no-latency. It fits both models but with different parameters.

Simulations

Figure 1 illustrates the macro-scale spread of a contagion 
such as covid-19. The macro-scale behavior can be modeled 
with nearly any logistics curve and OLS fitting. The Bass 
model will do, nicely [6-8]. But micro-scale models lack detail 
of the contagion network’s structure. What is the pattern 
of infection spreading underlying diffusion? Is it emergent, 
meaning, does the contagion transform randomness into non-

random structure, and what is the nature of the structure?. 
To answer these questions, the following simulations were 
performed. First, simulations were run for a population 
of n = 500 actors, with no latency, and for infection rate 
varying from 10% to 60%. The amount of self-organization, 
as indicated by spectral radius and fractal dimension of the 
long-tailed distributions, does not vary with infection rate. 
Only speed of spreading varies. See Figures 2a &2b.
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Figure 2a: Degree distribution. Figure 2b: Betweenness distribution.
Figures 2a&b: Results of simulated emergence of contagion network from n = 500 actors ad infection rates ranging from 10% 
to 60%. (a). Degree distribution with (red) log-log plot, and (b). Betweenness distribution. Note that both distributions are 
long tailed, indicating emergence of self-organization.

The average values of each parameter are shown in 
Figure 3. A “super-spreader hub” emerges with an average 
of 9.89 connections (infected actors). This is explained very 
simply as the effect of early infection – the first to be infected 
infects many other actors because it has more opportunities. 
The second infected actors have less time, third have even 
less time, etc. This, and the stochastic nature of infection, 
partially explains why scale-free structure emerges. The 
fractal dimensions, q-degree and q-Betweenness, indicate 
emergence of long-tailed or extreme values of node degree and 
betweenness, respectively. Starting from a flat distribution at 
the onset of the contagion, a long-tailed distribution emerges 
as high degree actors and high betweenness nodes become 
less frequent. A similar result was reported by Cirillo P, et al. 
[9]. A “perfect” scale-free network with n = 500, produced 

by the famous Barabasi-Albert algorithm produces a degree 
distribution with fractal dimension of approximately 
q-degree = 1.8, which is less than the q-degree of the simulated 
contagion networks studied here. This indicates that the 
simulated contagion networks are less bushy and more 
branchy, i.e., the degree distributions of contagion networks 
are shorter tailed. Finally, the larger the spectral radius and 
hub size is relative to the average degree, the more structure 
is present. In this study, the average degree is approximately 
2.25, yielding a ratio of 9.89/2.25 and 3.896/2.25 for 
hub/average degree and spectral radius/average degree, 
respectively. This further indicates emergence of structure, 
although contagion networks are less structed than “perfect” 
scale-free networks.

Figure 3: Parameter values for n = 500 actors and no latency. The spread of infection runs until all nodes are infected.
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Next, we turn to contagion networks with relatively 
small latencies (10 ±2) resulting in lower total infections 
and spreading determined by infection rate v = 50%, as 
shown in Figure 1. The following conjectures are proposed 
as hypothesis:
 
•	 Hub size and spectral radius increase with latency 

indicating increased structure.
•	 Network diameter and average betweenness decrease 

with latency indicating the emergence of a branchy vs. 
bushy network. Branchy vs. bushy networks are defined 
as follows: “Bushy versus branchy networks are… 
defined as small diameter large spectral radius (bushy) 
versus large diameter small spectral radius (branchy)” 
[1]. The effect of this hypothesis is to suggest that the 
emergence of structure is modest.

Simulations were run on n = 500 actors with constant 
infection rate v = 50% to study the hypotheses, above, see 

Figure 4. Hypothesis A is confirmed by logarithmic increase 
in hub size and spectral radius. This is what one would 
expect from self-organization of a network’s node degrees. 
As latency increases and allows more time for links to form, 
hub size increases and degree distribution becomes longer 
tailed. Hypothesis B is confirmed by decrease of diameter-a 
measure of branchy topology-and decrease of betweenness-
an indication of centralization or closeness of a handful of 
nodes. Betweenness distribution tends to obey a binomial 
distribution in a purely random network. Instead, contagion 
networks show self-organization around betweenness 
centrality by obeying a power law. However, q-betweenness 
is slightly larger for contagion networks than perfect scale-
free networks, in line with the branchy tendency of the 
scale-free contagion networks. Not shown in Figure 4, but of 
some interest. Is the decline of entropy from 8.96 bits prior 
to emergence, to 2.18 bits when latency is 15±1, to 1.87 bits 
when latency is 5±1, further proof of emergence of structure 
from randomness.

 

Figure 4: Results of simulations with n = 500, infection rate v = 50%, and latency varying from 5 to 15. Hub size and spectral 
radius increase, while diameter and betweenness decrease.

Conclusion

At the macroscale level, epidemic spreading is a diffusion 
process similar to other diffusion processes in nature and 
commerce. At the micro-scale level, epidemic spreading is a 
self- organizing emergent process that transforms a random 
network into a scale-free contagion network. The evidence 
of this is two-fold:
•	 Spectral radius increases as a super-spreader hub 

emerges. The degree distribution obeys a mild power 

law with fractal dimension greater than 2 (it has a mean 
value but no variance).

•	 A mildly structured scale-free contagion network 
emerges that is branchy versus bushy, with betweenness 
that declines with increasing latency according to a 
power law.

Practitioners are encouraged to vigorously pursue 
contact tracing and testing as a countermeasure because 
the further one goes back in time to the origin of the 
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contagion, the greater is the impact on eradicating a rapidly 
spreading contagion. Early detection and quarantine are a 
far more effective measure for preventing the emergence of 
a contagion network than belated detection and quarantine. 
Zipf’s law applies to early contact tracing. Because the 
contagion network is scale-free, 80% of the infections are 
cause by 20% of the nodes. By rapidly quarantining 20% of 
infected nodes, 80% of infections can be prevented.
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