
Ergonomics International Journal 
ISSN: 2577-2953MEDWIN PUBLISHERS

Committed to create value for Researchers

Application of Electromyography in Rehabilitation Devices Ergonomics Int J

Application of Electromyography in Rehabilitation Devices

Bhardwaj S, Khan AA* and Muzammil M
Department of Mechanical Engineering, Aligarh Muslim University, Aligarh (UP), India

*Corresponding author: Abid Ali Khan, Department of Mechanical Engineering, Aligarh 
Muslim University, Aligarh (UP), India, Email: abid.khan.me@amu.ac.in    

Research Article
Volume 4 Issue 4

Received Date: May 25, 2020

Published Date: July 02, 2020 

DOI: 10.23880/eoij-16000242

Abstract

With the increase in disability rate as well as rise in the elderly population, there is a need for a much prompt and advance 
methods to deliver the rehabilitation and assistive services to the patients. One important element in this context is the 
robotics rehabilitation devices. The therapeutic alliance is an important factor that needs to be addressed for these robotic 
devices where user compliance is still a broad field to be explored. Bio-signals have shown a promising approach in improving 
user physical and cognitive integration with these devices. Electromyogram (EMG) is one such bio-signal, originating from the 
peripheral nervous system, which is capable of interpreting the motion intent of the user. In the present study, the usability of 
EMG is shown for its feasibility in the context of rehabilitation devices. Method for acquisition, processing and classification 
of EMG has been discussed. 
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Introduction

Achieving human machine compliance is the main 
objective in rehabilitation robotics. Not only does having 
a good compliance helps to achieve a better assistance in 
activities of daily living, but in turn also aids in faster recovery 
of the patients [1]. Older generations of rehabilitation robots 
rely on traditional user interfaces such as joysticks, etc., 
which are generally difficult for the user to control. Therefore, 
a more advanced user-machine interface is sought to learn 
the intention of the user and therefore control/manipulate 
the parameters according to the patients’ intention and their 
recovery timeline [2].

Bio-signals plays a crucial role in measuring the human 
intention towards movement, and hence the measurement 
of assistance required. Electromyography signal (EMG), is a 
non-stationary signal which contains rich information about 
human intent to motion [3]. Moreover, EMG generation 
occurs approximately 20 to 80 ms before actual limb 
movement takes place [4]. With these advantages, EMG has 
found its usability in biofeedback applications concerning 
both neurological and musculoskeletal rehabilitation [5]. 

However, it is important to first process the acquired raw 
EMG signals into meaningful features, which are then 
classified to predict the desired motion [6].

The objective of this paper is to demonstrate the feasibility 
of EMG in developing rehabilitation application. Sit to stand 
(STS), which is a task of daily living, was considered for the 
present study. STS task poses a significant challenge for the 
people with lower limb weakness. The geriatric population 
and people with lower limb disabilities can benefit from the 
provision of assistive aids, and providing EMG control will 
make the aid autonomous for the user. With this notion, the 
acquisition, processing and classification of EMG data have 
been discussed regarding the STS task.

Methodology

Data Acquisition

EMG of vastus lateralis (VL) of both the legs (Left-VL 
and Right-VL) were recorded from five healthy participants 
(with their consent and approval from the ethics committee). 
Bipolar surface electrodes (SX230, Biometrics Ltd.) were used 
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to measure the EMG signal. The electrodes were connected 
to a DataLINK signal conditioning unit (DLK900, Biometrics 
Ltd.) that outputs an analog two channel signal to the NI-
6211 DAQ (National Instruments Ltd.). The DAQ system was 
communicated with the PC using a custom build LabVIEW 
program. Grounding electrode was placed at lunate bone of 
the left wrist for reducing high frequency DC artifacts. The 
sEMG data was sampled at 1000 Hz.

Processing and Feature Extraction

The EMG signal was high pass filtered using a Butterworth 
2nd order IIR filter with a 20 Hz cut off frequency and 50 Hz 
notch filter. Root mean square (RMS) was evaluated as the 
EMG feature. A Triangle-Bartlett windowing RMS filter was 
designed to calculate the RMS of the filtered EMG signal over 
a segment length of 500 samples.

Classification

Naive-Bayes model was used to classify the four 
different phases of STS task. The phases were determined 
based upon the angular deviation of the trunk and knee [7]. 
The four phases were: Phase I (P1) – sitting phase, where 
the participant sits comfortably on the stool; Phase II (P2) 
– intention to stand from sitting posture; Phase III (P3) – 
Transition phase; and Phase IV (P4) – standing phase. The 
training was performed on the 70% of the data while testing 
was performed on the rest 30 % of the data.

Result and Discussion

A sample recording for a participant showing the 
computed RMS is shown in Figure 1. The phase P1, P2, P3 
and P4 consisted of 12.9 %, 13.0 %, 66.8 % and 7.4 % of the 
STS task. Peak EMG RMS of VL was observed during P3 phase 
where the actual knee extension took place.

Figure 1: Phase description and EMG RMS of VL during 
STS task.

Figure 2 shows the confusion matrix for the Naive-
Bayes model used to classify the STS phases. The diagonal 
elements represent the degree of correctly predicted classes. 
The confusion is expressed by the falsely classified diagonal 
elements. Average true positive rate for the model was 92.4 
%. The highest classification error was reported for P2 i.e. 
the intention detection phase, when the EMG activity was 
just started without actual movement in the knees.

Figure 2: Normalized confusion matrix for Naive-Bayes 
classification rate.

The proposed model shows a unimodal approach 
for EMG classification. P2 is the most important phase 
concerning the measurement of intent in performing STS 
task. The classification accuracy can be further improved by 
considering a multimodal approach. Instead of only using 
EMG, a combination of EMG with body kinematics may 
improve the classification accuracy and precision [7].

Conclusion

Electromyography is frequently used to measure the 
human intentions in performing movements. The present 
article gives an overview on how the EMG signals are 
acquired, processed and classified for use in rehabilitation/
assistive applications. Naive-Bayes model predicted the 
overall classification accuracy of 92.4 % for STS task.
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