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Abstract

Four important variables that influence performance of a human-automation team (HAT) are the workload (resource) demands 
of the task and environment, and the reliability, degree, and transparency of the automation that assists the human. In this 
paper, first, we present a model that predicts how these variables influence the human contribution to performance of the 
HAT, as mediated by changes in trust, dependence, and situation awareness (SA) and experienced workload (dependent 
variables). These factors vary in their strength of influence and their interaction with each other. Then we describe in greater 
depth how a meta- analysis of 50 studies has revealed differences in the strength of influence of automation transparency on 
those dependent variables. In particular, transparency has a large effect on improving the accuracy of performance, increasing 
trust and situation awareness. Transparency has different benefits for performance in routine situations, where it improves 
accuracy of the human-automation team, than for situations when automation unexpectedly fails, where it decreases the time 
for failure recovery. Finally, we illustrate how the model accommodates differences in discrimination task difficulty revealed 
in an experiment on decision aiding for nautical collision avoidance. This shows the benefits of the model in predicting the 
tradeoff of factors influencing human-automation team performance. 
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Abbreviations: DOA: Degree of Automation; PTC: 
Positive Train Control; HAI: Human-Automaton Interaction; 
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Introduction

Human-automaton interaction (HAI) has been the 
subject of a myriad of articles over the past half century, 
beginning with a unique focus on aircraft automation [1] 
soon addressing issues in health care [2] industry [3] driving 
[4] security, business or legal decisions, education [5] 
consumer products  [6] air traffic control [7] and the military 

[8]. Most recently, an explicit focus on the capabilities of 
artificial intelligence (AI) algorithms and machine learning 
have amplified this interest [9,10]. The focus on AI has been 
extended to applications such as Chat GPT.

Although there are many reasons for the choice – to 
automate or not, and if to automate, to what degree or at 
what level – ultimately one primary reason for the choice 
is the performance of the human-automation team (HAT), 
as typically assessed by measures of accuracy and/or 
speed. Among the thousands of articles on the topic, a large 
number have examined the influence of certain properties 
of automation on measures of performance of the HAT: for 
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example, the influence of reliability [11-13] increasing which 
is found to generally improve performance; or the influence 
of automation transparency, also generally found to produce 
a benefit [14,15]. Typically, these effects are reported with 
statistical measures of “significance”. We argue here that 
what is needed as a next step is to turn these statistics into 
quantitative estimates of the degree of benefit (or cost) of 
specific automation features. These estimates can be offered 
at the micro-level: for example, implementing a certain form 
of transparency can shorten a driver’s take-over time with 
a self-driving car by XXX msec; or alternatively at a macro- 
level: for example, incorporating positive train control (PTC) 
in the locomotive cab, can reduce the frequency of derailment 
accidents by YY%. Such numbers can then be traded off 
against the financial costs of implementing automation 
features, to assess, from an actuarial standpoint, the net 
expected “value” (or cost) of adopting the feature or type of 
automation in question.

A complication to this kind of quantification arises 
because the various features of automation do not act in 
isolation from each other. Instead, they interact in sometimes 
unpredictable ways. For example, adding an autopilot 
steering control to a car may produce large benefits if it is 
highly reliable, but diminishing benefits if it is not, compared 
to adding auto-speed control. Hence, any quantitative 
predictive model should account for these linkages or 
interactions.

In the following, we present the framework for such a 
model. We emphasize framework, because what we present 
is far from complete and fully validated in terms of providing 

quantitative estimates of the strength with which a particular 
feature of automation will influence metrics of performance. 
This is particularly true when it comes to interactions 
between influences. Instead, in the following we:
•	 Highlight what we view are some of the most important 

interactions.
•	 Provide some rough estimates of relative weights for 

certain factors (and invite others to do so).
•	 Incorporate important intervening cognitive constructs 

between automation features and performance, in 
particular trust, dependence, situation awareness (SA) 
and workload.

•	 Address a subset of three features that we consider to be 
among the most important features of automation that 
influence HAT performance.

After we describe this influence model in some detail, 
we then report new data we have acquired on the specific 
quantitative, influences of transparency and automation 
reliability, and the implications of these data for the model.

The Hat Influence Model

The model of the influence on HAT performance of three 
properties of automation, coupled with the workload of the 
task and environmental is shown in Figure 1. To the far left 
we depict the effects of the difficulty (resource demands) of 
the task which is to be automated, along with the difficulty 
(cognitive demands or workload) imposed by the overall 
environment in which the task is performed. This latter 
factor can include the demands of concurrent tasks imposed 
while performing or assisting with the automated task.

Figure 1: The Influence Model of HAT Performance.
Note: The differences in the widths of the links indicate the strength of inferred effect, to be discussed later in the paper.

In the left box, we represent the three key interrelated 
features of the automated system, its reliability, the 
transparency imposed on its functioning (ATP) and the 

degree of automation (DOA), a variable that is increased 
both by the number of stages of human information 
processing automation is designed to assist, and by the level 
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of automation responsibility within each and all stages and 
the level of automation authority within each stage [16-18]. 
The green ovals in the center represent four intervening 
dependent variables, influenced by those properties of the 
automation, task and the environment. Of these, trust and 
dependence are grouped closely together because these two 
constructs, one purely cognitive and the other inferred from 
behavior, are often closely linked. SA and mental workload 
are constructs that have long been linked in the study of the 
HAT [19]. In the box to the right are two different aspects of 
the performance of the HAT (as typically measured by speed 
and/or accuracy).

Routine performance is that which the automation 
was designed for; it is often thought of as a measure of 
productivity, such as the time to travel to a destination with 
a self-driving car, or the accuracy of classifying a threat in 
the battlefield. Failure performance refers to the fluency with 
which the human can respond to a (typically) unexpected 
“failure” of the automation (including a failure of the power 
supply supporting its functions).

Between these elements of the HAT representation 
are causal links that depict inferred relationships between 
an increase in the commodity to the left and the level of 
the commodity to the right. A blue solid arrow indicates a 
relationship assumed to be positive (an increase in the cause 
leads to an increase in the effect); and a red dashed arrow 
connects elements with an inverse relationship (increase → 
decrease). Many of these 16 causal links are intuitive; and 
many are supported by research examples provided below. 
However, the relative strengths of these are often not well 
established, an important issue when actual performance 
predictions are to be made. We describe and number these 
links in the following text, generally moving down the 
figure from top to bottom and left-to-right. Inverse links are 
indicted by red arrows in the text. The difference in link width 
(indicating inferred inference strength) will be discussed at 
the end of the paper, after the empirical data are presented.
Link 1: Task difficulty → Automation reliability. This link is 
highly intuitive. The more challenging the task is, the less 
likely automation will be able to perform it perfectly. In target 
classification, more similar features between candidates 
(e.g., faces) will create greater challenges for machine-vision 
software.
Link 2: Reliability of automation → Routine performance. 
More reliable automation may result from increased 
algorithm sophistication or increased machine learning 
classification rate. This arrow is curved, bypassing the human 
component. Whatever the source of better (more reliable) 
automation performance, this curved link indicates that it is 
expected to yield better performance in the routine task for 
which it was designed.
Link 3: Reliability → Trust. It is both well established [20] 

and intuitive that more reliable automation will be provided 
a higher subjective rating of trust by the human.
Link 4: Trust → Dependence. Subjective trust and objectively 
measured dependence (often defined by the terms reliance or 
compliance; [21] tend to be closely linked, but are sometimes 
conflated in the literature. Indeed, they are distinctly 
different intervening variables, and often dissociate [22]. 
This is reflected by the different causal variables in the figure 
that are inputs to each, in the two links we describe next.
Link 5: Difficulty (workload) of the task → Automation 
dependence. It is both intuitive and reflected by research 
[23,24] that more difficult discrimination tasks yield greater 
dependence on automation, even as that automation may not 
be judged to be more reliable.
Link 6: Difficulty (workload) of the environment → 
Automation dependence. This link bypasses “trust” and 
flows directly to dependence, reflecting the fact that in high 
demand environments, operators may be forced to depend 
on (use) automation that they do not fully trust.
Link 7: Dependence → Routine performance. The strength of 
this link depends, in part, upon the disparity in performance 
between automation alone and the human alone. The greater 
is the former relative to the latter, the stronger the typical 
link is found to be [23-25]. However, this moderator does not 
imply that the human will accurately calibrate dependence 
to automation reliability. Operators often falling well short 
of that optimal dependence, such that a greater gap in 
performance between the two agents often a produces 
a greater shortfall between optimal and obtained HAT 
performance [11,23,24].
Link 8: Automation transparency (ATP) Trust. → This link is 
intuitive: Generally, people “like” automation that can explain 
how it is operating, and why, for example, automation arrived 
at its particular judgment or decision. As evident from link 4, 
the increased trust typically produces increased dependence.
Link 9: Transparency → SA. This link is almost a sine qua 
non: providing more information about what automation is 
doing will directly improve SA so long as that information is 
attended and understood. And providing more information 
about how automation works, should make the changes 
that automation is implementing more interpretable. Both 
“how it works” and “what it is doing” are vital components 
contributing to SA. [26].
Link 10: Dependence → Failure performance. It is intuitive 
that the more dependent one is on automation (as reflected, 
for example by greater investment of resources into 
concurrent tasks), the less vigilant one is of monitoring the 
concurrent automation. Also, the more dependent the user is 
upon its proper functioning, the less effective the user will be 
in intervening when automation fails [27].
Link 11: Situation awareness → Failure performance. This 
link, well validated by literature, and represented in the 
tradeoff lumberjack model [28] is based on the thinking that 
when things go wrong, and the operator must jump back 
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into the loop, this will be more effective and fluent if the 
operator is aware of what automation is doing at the time 
of the failure. Notice that there is no link from SA to routine 
performance. SA is a more important construct when things 
go wrong, than when automation supports their normal HAT 
functioning [16].
Link 12: ATP → Workload. The polarity (increase or decrease) 
of this link is uncertain because of the fact that transparency, 
while presumably alleviating the workload of maintaining 
SA might also, paradoxically increase the workload required 
to process the added displayed transparency information, 
hence offsetting any benefit to workload reduction [29].
Link 13: DOA → SA. This link is negative or inhibitory. A higher 
DOA “does more work” and hence, presumably the human 
does less. Doing less cognitive work in the HAT can lead to a 
reduction in SA because of the “generation effect” [30]: one 
tends to be less aware of the state of a dynamic situation 
when one is not generating actions pertaining to that system 
(and is simply monitoring automation performing those 
same actions).
Link 14: DOA→ Mental workload. The reason for this 
inhibitory relationship was stated in the previous link 
between DOA and SA.
Link 15: Mental workload → Failure response. Here we 
argue that fluent intervention when things go wrong 
typically requires cognitive resources. Any characteristic 
that produces more mental load and inhibits that “reserve 
capacity” available to diagnose a failure (higher workload) 
will degrade failure performance.
Link 16: DOA → Routine performance. This link, like curved 
Link 2 above, directly bypasses the human and is based 
on the assumption that, of the several reasons to invoke 
automation (or “more” automation: a higher DOA), one of the 
most prominent is to improve the “productivity” for which 
the automation was intended.

New Data

The links in Figure 1 are an important first step in defining 
this HAT influence model. However, the representation in 
the figure says nothing about two important and related 
issues that define the requirements for a computational 
model. First, there is no current representation of influence 
strength in any of the links, an element that is important if 
one is to make informed decisions regarding the overall 
utility of incorporating an automation feature (e.g., ATP, 
or increasing the DOA). Second, without representation of 
influence strengths, when two influences conflict, there is no 
way to determine “who wins”. As a specific example, consider 
the effect of increasing automation task difficulty. On the one 
hand, this is likely to decrease the reliability of automation 
and hence decrease user trust and dependence (links 2, 3 
and 4). On the other hand, a more difficult task will directly 
degrade the capability of the human to perform the same 

task manually, and hence likely to increase dependence upon 
automation (link 5), even as it may not be fully trusted.

Below, we present new data, first regarding the strengths 
of transparency benefit links and then regarding the trade-
off effects of discrimination task difficulty.

Transparency Meta-Analysis

A meta-analysis was completed using the results of 50 
studies that have examined the benefits (or lack thereof) 
of incorporating transparency into the HAT. Details are 
reported in [26]. From the 81 effect sizes that were derived 
(some studies reported more than one effect), we were able 
to report the effect sizes, representing ATP effect strength on 
measures of the four intervening variables shown in Figure 1 
as well as performance impacts (error rate, ER, and response 
times, RT) on HAT task performance. These data are shown 
in Table 1.

Dependent 
Variable

Mean Effect 
Size (Cohen’s d) N SD SE 2SE

ER -0.96 32 2.5 0.44 0.88
RT -0.53 48 1.22 0.18 0.35

Trust 0.79 43 0.89 0.14 0.27
Dependence 0.45 46 1.25 0.18 0.37

Workload -0.15 28 1.25 0.24 0.47
SA 1.06 18 1.57 0.37 0.74

Table 1: Effect Sizes of Either Imposing Transparency or 
Increasing the Degree of Transparency.
p<.05, p<.01

The table clearly reveals the large effect size of 
transparency on reducing error and increasing SA, the 
medium effect size on decreasing RT and increasing both 
trust and dependence, and essentially no effect on workload. 
These differential influences are reflected in the width of the 
links shown in Figure 1. Some additional differences in link 
strength in the figure are derived from the meta-analysis on 
DOA reported by Onnasch, et al [28]. The influence model 
shown in Figure 1 also makes the important distinction 
between routine performance and failure performance; and 
more details of the meta-analysis results reveals why this 
distinction is important. When performance of the routine 
task is examined (links 8,4,7) incorporating transparency 
has a large effect on reducing error rate (d = -1.02) but 
only a medium, beneficial effect on performance RT (d=-
0.41). However, when the effect on failure performance is 
examined (links 9,11), the benefits to speed and accuracy are 
reversed: The benefit for RT is large (d = -0.90) and for ER 
is only medium (d = -0.44). This finding seems particularly 
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important in time critical environments [31,32], such as 
driving with an autopilot [31]. Careful incorporation of 
transparency can substantially reduce the “takeover time” 
for an automation failure; and when travelling at a high 
speed, “seconds matter”.

Opposing Effects of Discrimination Task 
Difficulty

As noted above, the link chain from task difficulty to 
automation reliability to trust and dependence (1,3,4) makes 
opposite predictions to that from difficulty to dependence 
(5). Which influence component has the stronger effect when 
the difficulty of a detection or discrimination task is varied, 
and the raw data for that task is visible to both machine and 
human?

In a recent unpublished experiment, Pharmer and 
Wickens asked participants to make judgment of appropriate 
nautical collision avoidance maneuvers, when they could 
both see the direct ship trajectories (on a 2D plan view 
display) and see the advice of an automated decision aid. The 
collision problems varied in the difficulty of discriminating 
the better from the less optimal turn direction. Importantly, 
automation performance (reliability) was also degraded in 
proportion to that discrimination difficulty (Link 1). Link 
chain (1,3,4) would predict that dependence on automation 
should decline as difficulty increases. In contrast, link 5 
predicts that it should increase. Here, the data were clear, 
in support of the dominance of the link chain [1,3,4], over 
link 5. As the difficulty of discrimination increased and 
automation reliability hence declined from 100% (easy) 
to 72% (medium), to 58% (difficult), the dependence on 
automation (the extent to which the human complied with 
the automation’s imperfect recommendation) declined 
proportionally and significantly, from 81% to 73% to 64%. 
This difference is reflected in the thickness of influence 
weights in Figure 1. It may be interpreted as reflecting 
humans’ overconfidence in their own ability to judge the raw 
data, in the face of an increasingly difficult judgment task.

Conclusion

In conclusion, The Influence Model presents a plausible 
representation of the influence of four key features: the task 
performed by the HAT and 3 features of the automation 
member of the HAT, as they influence human cognition 
and HAT performance. We have confidence of the model’s 
validity in terms of the polarity of influences, but it is less 
well documented in its current form, in terms of influence 
strength. The meta-analysis presented on the effects of 
transparency illustrates how this can be done, and such 
strengths have also been assessed via meta-analysis for 
degree of automation [28]. It is important that the current 

model be augmented in this regard concerning the influence 
of task difficulty (here reflected in discrimination difficulty) 
and, of course that the global predictions of the model be 
validated through experiments, manipulating combinations 
of variables.
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