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Abstract

It is anticipated that vehicles having automated features of Level 0 to Level 5 will coexist in the future. However, many 
people are unsure what role, if any, human drivers will play at these levels. How do these automated features affect drivers' 
performances? This article attempts to answer this question by reviewing critical information from human-automation system 
characteristics of vehicles with specific automated features (AV). Essential facts about the differences in functional features 
between human drivers and systems and automated features at various levels were clarified and summarized, including their 
characteristics, roles, and technical AV structures. Finally, drivers’ performances at all automation levels were discussed. 
This review provides the insight needed to understand how the automated features affect drivers' performances and to what 
extent. The results indicate that drivers’ performance does not improve as the automated level upgrades. Compared with no 
automation, active-safety and high automation can achieve lower workload and better driving performances for drivers. In 
contrast, driver assistance and partial/conditional automation impose more increased workloads and unstable (even risky) 
driving performance.
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Introduction

The taxonomy and definitions of driving automated 
levels for on-road motor vehicles have been specified and 
continuously updated by the Society of Automotive Engineers 
(SAE) International [1]. These well-recognized automation 
levels include:

- Level 0 (L0): No driving automation.
- Level 1 (L1): Driver assistance.
- Level 2 (L2): Partial driving automation.
- Level 3 (L3): Conditional driving automation.
- Level 4 (L4): High driving automation.
- Level 5 (L5): Full driving automation.

According to Society of Automotive Engineers 
International [1], the vehicle needs to be driven by humans 
until L5. So far, more vehicle products (e.g., Tesla) with lower 
automation levels (L1 and L2) have emerged in the automobile 
market [2,3]. Also, many test vehicles (e.g., Waymo) with 
high automation levels (L4) have been deployed on public 
roads [4]. Therefore, it is very likely that vehicles having 
automation features of L0 to L5 will coexist in the future.

As the automation level increases, vehicles will have 
different features, and human drivers will behave differently. 
Accordingly, the performance of vehicles with certain 
automated features (hereinafter referred to as AV) might be 
different from the traditional human-driven vehicles (HV) [5]. 
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In addition, there has been a considerable amount of as-built 
roadway infrastructures, which are designed and constructed 
based on the characteristics of human drivers or HV. 

Figure 1: Methodology for establishing driver performance 
for various automation levels.

Therefore, it is necessary to consider human performance 
for AV. A critical question arises: How do these automated 
features affect driver performance? Will the automated 
features improve or impair driver performance? This article 

attempts to answer these questions following a thorough 
review of human-automation system characteristics of AV. 
This review presents in-depth knowledge of human-system 
interactions in AV that is essential to answer the above 
question.

The article is organized as follows (see Figure 1). The 
next section describes the relationships between the actors 
(human drivers and automation systems) and functional 
layers, automation levels, and vehicle technical structures. 
The following section describes driver performance 
for different automation levels. Finally, several exciting 
considerations are then discussed, followed by conclusions.

Human Drivers and Automation Levels

How do automated features affect human driver 
performance? Before we can answer this question, some 
aspects of the differences between the actors (human drivers 
and automated systems) should be reviewed and clarified for 
the following elements: (a) the primary functional layers, (b) 
the automation levels, and (c) the vehicle technical structure. 
These aspects provide the rationale for answering the 
stipulated question.

Actors’ Differences Regarding Functional Layers

According to the data flow direction of the primary 
driving-functional layers, the executive elements of the 
human driver and the automated system at each functional 
layer are shown in Figure 2, where the administrative 
components are organs or software/hardware. 

Figure 2: Differences in vehicle actors’ components at primary functional layers.
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Specifically, first, the system employs a variety of 
perception sensors receiving information from the internal 
state of AV and the external roadway environment to 
complete the detection and self-positioning tasks. Among 
those tasks, the sensing module analyzes that information 
to realize the recognition and cognition of traffic targets or 
events. Second, based on the upstream sensing results, the 
onboard computing platform with the built-in algorithms 
(i.e., the central processing unit) determines the anticipated 
trajectory and updates the tracking commands. Then, these 
decision results are transmitted to the next control layer 
through the data transfer bus, followed by determining the 
control signals of each actuator (e.g., accelerator and brake). 

Finally, each actuator responds to the corresponding control 
signal, followed by feeding the updated driving state back to 
the perception layer as internal signals. This process enables 
the closed loop of data propagation [6].

Figure 2 also shows how the human driver and the 
automation system complete the tasks of each functional 
layer. As noted, compared with the automation system, the 
driver uses body organs (e.g., limbs) and physical mechanisms 
(e.g., vision) to handle the same tasks in the same functional 
layer. However, they might perform differently. Table 1 shows 
the detailed performance differences between human driver 
and automation systems for various functional layers.

Functional 
Layer

Performances in Functional Layers

Human Driver Automation System

Perception

Large static field of vision (circa 120 deg), but 
the dynamic horizontal vision focuses on its 

centerline as driving speed increases, impairing 
the perception of surrounding obstacles, targets, 

and events [7]; No investigation of the vertical 
field of view.

 Various perception sensors are deployed to increase the 
horizontal field of view (about 360 deg) and the range of 
acceptable electromagnetic wavelengths. Sensors have 

more explicit edges of vertical field of view. Redundancy 
and data-fusion technologies ensure perception results’ 

accuracy, reliability, and robustness. The field of view 
is not affected by driving speeds. However, cameras 

are susceptible to adverse weather. Also, it is difficult 
to address the problems of inaccurate or missed object 
detection caused by insufficient angular resolutions [8].

 Good at summarizing and processing 
information in complex or ambiguous scenarios, 

but difficult to process multiple perception 
tasks at the same time, resulting in increased 

reaction time; good learning ability but relatively 
long duration; good recognition accuracy, but 

vulnerable to adverse weather.

Capable of processing multiple perception tasks 
in numerous channels simultaneously and good at 

quantifying and measuring perception signals, but the 
pattern recognition ability for complex or ambiguous 
scenarios requires long training and learning time [9].

Decision-
making

Good at judging and predicting the intentions 
of obstacles, targets, and traffic events but 
vulnerable to adverse driving conditions.

 Decision-making and motion-planning algorithms can 
obtain results quickly, but they need long training and 
learning time to address multiple-solution scenarios; 

Difficult to evaluate the reliability of planning results in 
real time; and algorithms are vulnerable to outliers [10].

Control
Easy to be affected by individual physiological 

and psychological states and driving styles, 
resulting in unstable maneuverability [11].

Command the actuator through electrical signals to 
improve the steering, power, braking, and comfort, and 

ensure that the executions are highly consistent and 
repeatable, especially for DDTs that require the driver 
to be alert [12], but there is still an inevitable delay in 

signal transmission.

Table 1: Differences between vehicle actors for each primary functional layer.

Actors’ Differences Regarding Automation 
Levels

As stated in Society of Automotive Engineers 
International [1], the automation levels are defined regarding 

the specific role played by the primary actors (human driver 
and automated system) in performing the dynamic driving 
tasks (DDT) and DDT fallback. Note that “role” in this context 
refers to the expected role of a given primary actor based on 
the design of the driving automation system instead of the 
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actors’ actual performance. Therefore, based on the actors’ 
roles at each level, the required driving tasks or allowable 

non-driving activities within the corresponding operational 
design domain (ODD) are summarized in Table 2. 

Driving/Non-Driving Activities
Roles of Actorsa

L0- L0+ L1 L2 L3 L4 L5
A A B A B A B A B A B A B

DDT Sustained vehicle 
motion control

Lateral     b         

Longitudinal      b        

DDT
Object and event 

detection and 
response

Road-traffic 
environment      c        

Functional vehicle 
state             

Functional state of 
automation systems             

DDT fallback             

Non-driving activities   -  -  -  -  -  -

Table 2: Roles of vehicle actors at different automation levels [1].
aa = human driver, b = automation system, “” and “” denote the actor can and cannot participate in this driving/non-driving 
activity, respectively; “-” denotes that the system does not have the function of participating in non-driving activities.
 bWhen the system engages in sustained longitudinal or lateral motion control, the driver is required to conduct motion control 
in the remaining direction. Therefore, the table considers the system conducting longitudinal motion control as an example.
 cThe system conducts OEDR in the same direction as the motion control. 

It is also important to note that the specification of 
automation levels adopted in China excludes the complete 
absence of automation from L0 and retains the features of 
Active Safety Systems (ASS), that is “Emergency Assistance 
(EA).” Although EA only provides an instant or temporary 
reminder/warning or maneuvering intervention to reduce 
or avoid potential risks, many previous studies have found 
that EA, with statistical significance, can: (a) help drivers 
perceive targets or events in advance, (b) improve their 
response-ability confronting emergencies, and (c) prompt 
and instruct their maneuverability [13-15]. Therefore, for 
the following review and discussions, the L0 specified in 
Society of Automotive Engineers International [1] is divided 
into two sub-levels: L0- and L0+. The former denotes neither 
driving automation nor ASS features are available, and the 
latter indicates that only ASS features are presented.

Table 2 shows that drivers can participate in non-driving 
activities since the L3 level. At levels below L4, the driver 
is still required to conduct all or part of the DDT. However, 
previous studies found that as the system participates in 
more DDT types, the driver is more inclined to engage in non-
driving activities [16,17] (e.g., texting, making phone calls, 
etc.), even at L1 or L2. In addition, the roles of the actors at L4 
and L5 are identical, where the driver can choose whether to 
perform DDTs or not by will.

Actors’ Differences Regarding Vehicle Technical 
Structures

From the perspective of vehicle technical structures 
(VTS), the human driver and the system dominate the 
control of vehicles with L0- and L5 features, respectively. But 
at L0+ ~ L4, the human-system interaction driving (H-SID) 
technology is adopted. However, due to the ODD limitation, 
H-SID technology is still applied in L4.

According to the results listed in Table 2 and existing 
H-SID technologies [18], VTSs adopted in all automation 
levels can be summarized as follows (see Figure 3):

•	 L0- and L0+: Single-driving, single-control structure.
•	 L1: Parallel dual-driving, dual-control (shared control) 

structure.
•	 L2 ~ L5: Serial dual-driving, single control (traded 

control) structure.

In the structures listed above, the number of actors with 
independent driving ability determines the single or dual-
driving, and the number of actors who can participate in the 
driving operation determines the single or dual-control [18]. 
Also, the definition of “shared control” and “traded control” 
was first addressed by Sheridan and Verplank [19]. They 
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explained the shared control as: “In the case where both 
computer and human are working on the same task at the 
same time” and the traded control as: “when they work on 
the same task at different times”. 

As illustrated in Figure 3, the difference in VTSs of all 
levels is essentially the difference in the allocation of DDTs 
control rights between the driver (if any) and the system 
(if any) along the same time dimension. It should be noted 
that, as stated above, because EA only provides temporary 
assistance, the system at L0+ has neither driving ability 
nor control rights. Also, as the driver’s console might be 
withdrawn completely at L5, the single-driving single-control 
structure is adopted in this case.

Figure 3: Vehicle technical structures of different 
automation levels.

Moreover, a crucial control-switching process exists in 
the traded control structure [18]. In particular, a mandatory 
disengagement initiated by the L2 system requires the driver 
to take over immediately. After issuing a takeover request, 
the L3 system can execute a specific risk mitigation strategy 
to achieve a minimal risk condition.

However, it still needs the driver to be receptive and 
take over promptly. On the other hand, the takeover request 
issued by the L4 or L5 system does not require the driver to 
be respective, and it can self-achieve a minimal risk condition. 
This control-switching process also exists in the shared 
control structure. The driver in the loop of longitudinal DDTs 

must perform all lateral DDTs immediately after the system 
disengages.

Driver Performance for Automation Levels

Due to the significant differences in the automated 
features, drivers will not perform congruently at different 
levels. Previous studies investigated drivers’ performances 
mainly from the perspective of driving performances 
and workload [20,21]. Driving performances refer to the 
behaviors during maneuvering, which are primarily evaluated 
by the driver’s reaction times [22] and maneuvering stability 
(e.g., the deviation from the lane centerline, speeds, etc.) 
[23]. The workload is evaluated by the driver’s physiological 
and psychological fatigue [24]. Based on the literature 
results, Figure 4 summarizes the variation trends of drivers’ 
performances with increased automation levels. 

Figure 4: Drivers’ performances for different automation 
levels.

As shown in Figure 4, driver performance does not 
simply improve with the automation levels. Specifically:

•	 L0-, driver performance at this level is selected as a 
baseline.

•	 L0+, based on its definition previously stated, EA, as a 
supplement and monitor of a driver’s maneuverability, 
could reduce their workload effectively [15]. In this 
case, the driver with a lower workload prefers to 
improve their driving performance [15], which has 
been widely investigated and confirmed. For example, 
the pre-warning system can timely inform the driver 
of the forward/lateral potential crashes or trajectory 
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deviations. 
•	 L1: The system at this level is a further improvement 

of L0+ system in maneuvering ability. Widely-known 
functions include adaptive cruise control (ACC) and 
lane centring control (LCC) that paralyze the driver 
from longitudinal and lateral directions, respectively. 
Therefore, compared with the driver at L0+, they at 
L1 probably have a lower workload and participation 
extent in maneuverability when the system engages 
[16]. However, after the system disengages and the 
driver takes over subsequently, their workload increases 
and driving performances deteriorate significantly [25]. 

•	 L2: Although the driver is still required to monitor at all 
times (see Table 2), the results of both field tests and 
driving simulation tests show that the driver is more 
likely to be distracted, and the driving performance after 
taking over is worse than that at L0- [16,17], but there is 
no statistical difference with that at L1 [26].

•	 L3: Due to the absence of DDTs, the driver needs to 
recover motor readiness and maneuvering stability from 
the state of low workload and situational awareness 
when the takeover request is receptive [27], which 
generally consumes a significant amount of time [28]. 
Also, the driving performance after taking over might 
be significantly worse than that at L0-, even lower 
than L1 and L2 [21]. Note that the system can execute 
a limited risk-mitigation strategy (e.g., braking at a 
comfort deceleration [1]) during the “extra” takeover 
time and before the preset “time budget [29]” ends. 
Also important to know is that both “motor readiness” 
and “situational awareness” are associated with driving 
performance significantly [21]. Situational awareness 
refers to the driver’s understanding of the road-traffic 
environment and events from a cognitive perspective 
[21]. Motor readiness refers to the driver’s willingness 
to achieve typical driving performance from a physio-
psychological perspective [27].

•	 L4: A noticeable distinction in driver’s roles between 
L3 and L4 exists within their ODDs. The driver at L4 
can actively take over when their motor readiness is 
completely recovered. Therefore, drivers at L4 can 
achieve much better performance than L0-.

•	 L5: Because whether to reserve the console at L5 is still 
under discussion, we tentatively suppose L5 to be the 
ideal L4. Their automated features can be considered 
equally when the ODD effects are excluded. Thus, driver 
performance at L5 is the same as those at L4.

Note that the results in Fig. 4 are limited by the existing 
automated driving technology and, so far, AV-related testing 
samples. Also, those results only focus on the general 
performance results reflecting a very large safety margin 
instead of capturing those in an ideal AV driving scenario 
without the system disengaging or the driver taking over. 

For example, Naujoks, et al. [30] instructed drivers at L2 to 
closely pay attention to the environment ahead and hold the 
steering wheel throughout the trial. In this case, they found 
that drivers’ reaction times and maneuvering stability are 
much better than drivers at L0-. However, this instruction can 
affect the actual performance of drivers.

Exciting Considerations

Can Automation Impair Driving Performance?

Some studies have shown that vehicle automation 
can make drivers over-reliant on technology. In addition, 
if the driver is not engaged in non-driving tasks when an 
automated feature is on, the driver may become drowsy. 
These conditions may result in less monitoring of the road 
and less driving safety. Using a driving simulator, Dunn NJ, 
et al. [31] recently evaluated the effectiveness of in-vehicle 
displays in AV (adaptive cruise control and lane-keeping 
assistance) in supporting drivers’ anticipation of traffic 
conflicts. The results showed that drivers monitoring the 
road with automation was less than when the automated 
features were turned off. Therefore, it was recommended 
that the automated features be designed to keep drivers 
attentive.

He D, et al. [32] evaluated the effect of the automated 
features of L2 that can control some driving tasks for a long 
time, such as braking and steering. The data were collected 
using automated vehicles to evaluate distraction-related 
factors, such as eye-glance behavior and drowsiness. The 
results showed that drivers with prior experience with 
automated driving were substantially more distracted 
when automation was on than manual driving. In addition, 
drivers with less experience in automation showed less 
distraction but tended to be somewhat drowsy when 
driving with activated systems. The authors concluded that 
the automation experience resulted in over-trust of the 
advanced technologies, thus negating some safety benefits of 
automation.

Several exciting studies found that the lack of active 
involvement in the driving situation caused drivers with 
automation to be prone to become fatigued faster than human 
drivers. In addition, fatigue progression during automated 
driving (L3) and the driver’s ability to take back control were 
evaluated by Vogelpohl T, et al. [33] using a driving simulator. 
The results showed that drivers with automation took longer 
to first glance at the speed display than manual drivers after 
a takeover request. In addition, drivers could not stay alert 
during extended periods of automated driving without non-
driving-related tasks. Therefore, the study concluded that 
driver fatigue monitoring and controllable distraction (using 
non-driving tasks) were necessary to ensure the driver’s 
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alertness.

Driver’s Takeover Using Physiological Sensing

The driver’s takeover performance before a takeover 
request was evaluated by Du N, et al. [34] by analyzing 
drivers’ physiological and external environment data. In 
their experiments, drivers engaged in non-driving-related 
tasks during automated driving were asked to take control 
in various scenarios. The drivers’ physiological data included 
heart rate, galvanic skin response indices, and eye-tracking 
metrics. Drivers’ takeover performance was classified as 
good or bad based on their driving behaviors during the 
transition period. The takeover performance was analyzed 
using six machine learning methods, with the random forest 
classifier performing the best. The study recommended 
3 s as the optimal time window length to predict takeover 
performance. This study’s findings should help develop 
algorithms for detecting the driver’s state and designing 
adaptive in-vehicle alert systems.

Key Challenge: 390-Year Safety Standards

Autonomous vehicles (L4 and L5) represent the ultimate 
solution to future automation, but their safety remains a 
challenge. Wang J, et al. [35] have reviewed the safety-related 
issues for AV using theoretical analysis of the AV systems and 
statistical investigation of the disengagements and crash 
reports for on-road testing. The results showed that 3.7 M 
miles on AVs have been tested by various manufacturers 
(2014 to 2018) and the disengagement frequency per mile 
for different manufacturers substantially varied (from almost 
0 to 3). In addition, 128 crashes occurred during this period, 
with 63% caused in the autonomous mode. Of these crashes, 
6% were directly related to the AV, and 94% were passively 
initiated by other parties, such as pedestrians, cyclists, and 
conventional vehicles. Therefore, safety can be substantially 
improved by adding AV capabilities to alert and avoid safety 
risks caused by other parties and to make safe decisions to 
prevent possible fatal crashes. As for the safety standards for 
AVs, the traffic safety standard is 3.4 M vehicle hours between 
fatal crashes and 61,400 vehicle hours between injuries. 

These standards imply that one fatality and one crash 
may occur every 390 years and 7 years of non-stop driving. 
Such standards are very high. Further, there are questions 
about how to design an automated vehicle to be safe and 
demonstrate that this safety level has been achieved. For 
more details about these and other unresolved questions 
and the opportunities for early wins, the reader is referred to 
the excellent presentation by Shladover SE [36].

Concluding Remarks

This article has presented a review of human-automation 

system characteristics of AV to show how automated driving 
features impact driver performance for various automation 
levels and the nature of this impact. Based on this study, the 
following comments are offered:
• 
• The study revealed that driver performance does not 

continually improve as the automation level upgrades. 
Compared with HV drivers, drivers at L0+, L4, and 
L5 can achieve lower workloads and better driving 
performance, while drivers at L1 to L3 are subjected 
to higher workloads and unstable (even risky) driving 
performance. In this context, the risky edge is L3, and 
the safe edge is L4. This highlights the importance of 
focusing on the impact of automated features on human 
factors and driving safety.

• This review has shown that the lower automation levels 
adversely impact driver performance. In particular, for 
conditional driving automation, drivers may be prone 
to fatigue and need a longer time to respond a takeover 
request. Therefore, some researchers have suggested 
adopting controllable distractions through the automated 
system using non-driving tasks. Such constant feedback 
from the drivers may provide information about the 
driving environment, thus helping the takeover before 
issuing a takeover request. In addition, the takeover-
request lead time is still a challenging research area [37].

• Given the possible adverse impact on the human driver 
during the automation control, research has emerged 
regarding objective indicators (facial, behavioural, and 
eye tracking-based) to judge the driver’s readiness to take 
over the driving control. In addition, future automated 
driving systems may be required to decide, based on the 
drivers’ state obtained via in-vehicle monitoring system, 
whether: (a) to give back control to the driver or (b) to 
transfer the control to a safer state [33]. 

• The development of automated driving technology is 
still in its infancy. Drivers, in this case, lack learning and 
training opportunities, which might affect the review 
results of this article. Therefore, future research should 
continually update the results based on the latest 
progress and application status.

References

1. Society of Automotive Engineers International (2021) 
Taxonomy and Definitions for Terms Related to Driving 
Automation Systems for On-Road Motor Vehicles J 
3016:_201806.

2. Tesla (2022) Electric Cars, Solar & Clean Energy.

3. Chen D, Srivastava A, Ahn S, Lia T (2019) Traffic 
Dynamics under Speed Disturbance in Mixed Traffic with 
Automated and Non-Automated Vehicles. Transportation 

https://medwinpublishers.com/EOIJ
https://www.sciencedirect.com/topics/medicine-and-dentistry/electrodermal-response
https://www.sciencedirect.com/topics/engineering/machine-learning-method
https://www.sciencedirect.com/topics/engineering/driver-state
https://www.sae.org/standards/content/j3016_201806/
https://www.sae.org/standards/content/j3016_201806/
https://www.sae.org/standards/content/j3016_201806/
https://www.sae.org/standards/content/j3016_201806/
https://www.sciencedirect.com/science/article/pii/S2352146519300468
https://www.sciencedirect.com/science/article/pii/S2352146519300468
https://www.sciencedirect.com/science/article/pii/S2352146519300468


Ergonomics International Journal 8

Easa SM, et al. How do Vehicle Automated Features Help or Hurt Driving Performance?. Ergonomics Int J 2023, 
7(1): 000300.

Copyright©  Easa SM, et al.

Research Procedia 38: 709-729.

4. Boggs AM, Wali B, Khattak AJ (2020) Exploratory 
Analysis of Automated Vehicle Crashes in California: A 
Text Analytics & Hierarchical Bayesian Heterogeneity-
Based Approach. Accident Analysis & Prevention 135: 
105354.

5. Wang S, Yu B, Ma Y, Liu J, Zhou W (2021) Impacts 
of Different Driving Automation Levels on Highway 
Geometric Design from the Perspective of Trucks. Journal 
of Advanced Transportation 2021: 5541878. 

6. Yurtsever E, Lambert J, Carballo A, Takeda K (2020) A 
Survey of Autonomous Driving: Common Practices and 
Emerging Technologies. IEEE Access 8: 1-28.

7. Habib K, Tawfeek MH, El-Basyouny K (2022) A System to 
Determine Advisory Speed Limits for Horizontal Curves 
Based on Mental Workload and Available Sight Distance. 
Canadian Journal of Civil Engineering 49(3).

8. Brummelen JV, O’brien M, Gruyer D, Najjaran H (2018) 
Autonomous Vehicle Perception: The Technology of 
Today and Tomorrow. Transportation Research Part C: 
Emerging Technologies 89: 384-406.

9. Wang Z, Wu Y, Niu Q (2020) Multi-Sensor Fusion in 
Automated Driving: A survey. IEEE Access 8: 2847-2868.

10. Hang P, Huang C, Hu Z, Xing Y, Lv C (2021) Decision 
Making of Connected Automated Vehicles at An 
Unsignalized Roundabout Considering Personalized 
Driving Behaviours. IEEE Transactions on Vehicular 
Technology 70(5): 4051-4064. 

11. Storsaeter AD, Pitera K, McCormack ED (2020) The 
Automated Driver as a New Road User. Transport 
Reviews 41(5): 533-555.

12. González D, Pérez J, Milanés V, Nashashibi F (2016) A 
Review of Motion Planning Techniques for Automated 
Vehicles. IEEE Transactions on Intelligent Transportation 
Systems 17(4): 1135-1145. 

13. Wu X, Boyle LN, Marshall D, O’Briena W (2018) The 
Effectiveness of Auditory Forward Collision Warning 
Alerts. Transportation Research Part F: Traffic 
Psychology And Behaviour 59: 164-178.

14. Aust ML, Engström J, Viström M (2013) Effects of Forward 
Collision Warning and Repeated Event Exposure on 
Emergency Braking. Transportation Research Part F: 
Traffic Psychology and Behaviour 18: 34-46.

15. Gaspar JG, Schwarz CW, Brown TL, Kang J (2019) 
Gaze Position Modulates the Effectiveness of Forward 

Collision Warnings for Drowsy Drivers. Accid Anal Pre 
126: 25-30.

16. Young MS, Stanton NA (2007) Back to the Future: Brake 
Reaction Times for Manual and Automated Vehicles. 
Ergonomics 50(1): 46-58.

17. Naujoks F, Höfling S, Purucker C, Zeeb K (2018) From 
Partial and High Automation to Manual Driving: 
Relationship between Non-Driving Related Tasks, 
Drowsiness and Takeover Performance. Accident 
Analysis & Prevention 121: 28-42.

18. Winter JCD, Petermeijer SM, Abbink DA (2022) Shared 
Control Versus Traded Control in Driving: A Debate 
Around Automation Pitfalls. Ergonomics 1-27. 

19. Sheridan TB, Verplank WL (1978) Human and Computer 
Control of Undersea Teleoperators. Technical Report, 
MIT Man-Machine Laboratory, Department of Mechanical 
Engineering, Cambridge, England.

20. Stanton NA, Young M, McCaulder B (1997) Drive-By-
Wire: The Case of Driver Workload and Reclaiming 
Control with Adaptive Cruise Control. Safety Science 
27(2-3): 149-159.

21. Winter JCD, Happee R, Martens MH, Stantond NA (2014) 
Effects of Adaptive Cruise Control and Highly Automated 
Driving on Workload and Situation Awareness: A Review 
of the Empirical Evidence. Transportation Research Part 
F: Traffic Psychology and Behaviour 27(Part B): 196-
217.

22. Zeeb K, Buchner A, Schrauf M (2015) What Determines 
the Take-Over Time? An Integrated Model Approach of 
Driver Take-Over after Automated Driving. Accid Anal 
Prev 78: 212-221.

23. Naujoks F, Purucker C, Wiedemann K, Marberger 
C (2019) Noncritical State Transitions During 
Conditionally Automated Driving on German Freeways: 
Effects of Non-Driving Related Tasks on Takeover Time 
and Takeover Quality. Human Factors: The Journal of the 
Human Factors and Ergonomics Society 61(4). 

24. Eriksson A, Stanton NA (2017) Takeover Time in Highly 
Automated Vehicles: Noncritical Transitions to and from 
Manual Control. Human Factors: The Journal of the 
Human Factors and Ergonomics Society 59(4).

25. Larsson AFL, Kircher K, Hultgren JA (2014) Learning 
from Experience: Familiarity with ACC and Responding to 
a Cut-In Situation in Automated Driving. Transportation 
Research Part F: Traffic Psychology and Behaviour 
27(Part B): 229-237.

https://medwinpublishers.com/EOIJ
https://www.sciencedirect.com/science/article/pii/S2352146519300468
https://www.sciencedirect.com/science/article/abs/pii/S0001457519308735
https://www.sciencedirect.com/science/article/abs/pii/S0001457519308735
https://www.sciencedirect.com/science/article/abs/pii/S0001457519308735
https://www.sciencedirect.com/science/article/abs/pii/S0001457519308735
https://www.sciencedirect.com/science/article/abs/pii/S0001457519308735
https://www.hindawi.com/journals/jat/2021/5541878/
https://www.hindawi.com/journals/jat/2021/5541878/
https://www.hindawi.com/journals/jat/2021/5541878/
https://www.hindawi.com/journals/jat/2021/5541878/
https://arxiv.org/pdf/1906.05113.pdf
https://arxiv.org/pdf/1906.05113.pdf
https://arxiv.org/pdf/1906.05113.pdf
https://cdnsciencepub.com/doi/abs/10.1139/cjce-2020-0482
https://cdnsciencepub.com/doi/abs/10.1139/cjce-2020-0482
https://cdnsciencepub.com/doi/abs/10.1139/cjce-2020-0482
https://cdnsciencepub.com/doi/abs/10.1139/cjce-2020-0482
https://www.sciencedirect.com/science/article/abs/pii/S0968090X18302134
https://www.sciencedirect.com/science/article/abs/pii/S0968090X18302134
https://www.sciencedirect.com/science/article/abs/pii/S0968090X18302134
https://www.sciencedirect.com/science/article/abs/pii/S0968090X18302134
https://ieeexplore.ieee.org/document/8943388
https://ieeexplore.ieee.org/document/8943388
https://ieeexplore.ieee.org/document/9403993
https://ieeexplore.ieee.org/document/9403993
https://ieeexplore.ieee.org/document/9403993
https://ieeexplore.ieee.org/document/9403993
https://ieeexplore.ieee.org/document/9403993
https://www.sciencedirect.com/org/science/article/abs/pii/S0144164722000691
https://www.sciencedirect.com/org/science/article/abs/pii/S0144164722000691
https://www.sciencedirect.com/org/science/article/abs/pii/S0144164722000691
https://www.sciencedirect.com/science/article/abs/pii/S1369847818303279
https://www.sciencedirect.com/science/article/abs/pii/S1369847818303279
https://www.sciencedirect.com/science/article/abs/pii/S1369847818303279
https://www.sciencedirect.com/science/article/abs/pii/S1369847818303279
https://www.sciencedirect.com/science/article/abs/pii/S1369847813000065
https://www.sciencedirect.com/science/article/abs/pii/S1369847813000065
https://www.sciencedirect.com/science/article/abs/pii/S1369847813000065
https://www.sciencedirect.com/science/article/abs/pii/S1369847813000065
https://pubmed.ncbi.nlm.nih.gov/29277383/
https://pubmed.ncbi.nlm.nih.gov/29277383/
https://pubmed.ncbi.nlm.nih.gov/29277383/
https://pubmed.ncbi.nlm.nih.gov/29277383/
https://psycnet.apa.org/record/2006-23171-004
https://psycnet.apa.org/record/2006-23171-004
https://psycnet.apa.org/record/2006-23171-004
https://pubmed.ncbi.nlm.nih.gov/30205284/
https://pubmed.ncbi.nlm.nih.gov/30205284/
https://pubmed.ncbi.nlm.nih.gov/30205284/
https://pubmed.ncbi.nlm.nih.gov/30205284/
https://pubmed.ncbi.nlm.nih.gov/30205284/
https://pubmed.ncbi.nlm.nih.gov/36476120/
https://pubmed.ncbi.nlm.nih.gov/36476120/
https://pubmed.ncbi.nlm.nih.gov/36476120/
https://csreferences.lr.tudelft.nl/aigaion25/index.php/publications/show/481
https://csreferences.lr.tudelft.nl/aigaion25/index.php/publications/show/481
https://csreferences.lr.tudelft.nl/aigaion25/index.php/publications/show/481
https://csreferences.lr.tudelft.nl/aigaion25/index.php/publications/show/481
https://www.sciencedirect.com/science/article/abs/pii/S0925753597000544
https://www.sciencedirect.com/science/article/abs/pii/S0925753597000544
https://www.sciencedirect.com/science/article/abs/pii/S0925753597000544
https://www.sciencedirect.com/science/article/abs/pii/S0925753597000544
https://www.sciencedirect.com/science/article/abs/pii/S1369847814000904
https://www.sciencedirect.com/science/article/abs/pii/S1369847814000904
https://www.sciencedirect.com/science/article/abs/pii/S1369847814000904
https://www.sciencedirect.com/science/article/abs/pii/S1369847814000904
https://www.sciencedirect.com/science/article/abs/pii/S1369847814000904
https://www.sciencedirect.com/science/article/abs/pii/S1369847814000904
https://pubmed.ncbi.nlm.nih.gov/25794922/
https://pubmed.ncbi.nlm.nih.gov/25794922/
https://pubmed.ncbi.nlm.nih.gov/25794922/
https://pubmed.ncbi.nlm.nih.gov/25794922/
https://journals.sagepub.com/doi/full/10.1177/0018720818824002
https://journals.sagepub.com/doi/full/10.1177/0018720818824002
https://journals.sagepub.com/doi/full/10.1177/0018720818824002
https://journals.sagepub.com/doi/full/10.1177/0018720818824002
https://journals.sagepub.com/doi/full/10.1177/0018720818824002
https://journals.sagepub.com/doi/full/10.1177/0018720818824002
https://journals.sagepub.com/doi/10.1177/0018720816685832
https://journals.sagepub.com/doi/10.1177/0018720816685832
https://journals.sagepub.com/doi/10.1177/0018720816685832
https://journals.sagepub.com/doi/10.1177/0018720816685832
https://www.sciencedirect.com/science/article/abs/pii/S1369847814000746
https://www.sciencedirect.com/science/article/abs/pii/S1369847814000746
https://www.sciencedirect.com/science/article/abs/pii/S1369847814000746
https://www.sciencedirect.com/science/article/abs/pii/S1369847814000746
https://www.sciencedirect.com/science/article/abs/pii/S1369847814000746


Ergonomics International Journal 9

Easa SM, et al. How do Vehicle Automated Features Help or Hurt Driving Performance?. Ergonomics Int J 2023, 
7(1): 000300.

Copyright©  Easa SM, et al.

26. Stanton NA, Young MS, Walker GH, Turner H, Randle 
S (2001) Automating the Driver’s Control Tasks. 
International Journal of Cognitive Ergonomics 5(3).

27. Merat N, Jamson AH, Lai FCH, Carsten O (2012) Highly 
Automated Driving, Secondary Task Performance, and 
Driver State. Human Factors: The Journal of the Human 
Factors and Ergonomics Society 54(5).

28. DinparastDjadid A, Lee JD, Domeyer J, Brown TL, 
Gunaratne P (2021) Designing for the Extremes: 
Modeling Drivers’ Response Time to take Back Control 
from Automation Using Bayesian Quantile Regression. 
Human Factors: The Journal of the Human Factors and 
Ergonomics Society 63(3).

29. Lotz A, Russwinkel N, Wohlfarth E (2019) Response 
Times and Gaze Behavior of Truck Drivers in Time 
Critical Conditional Automated Driving Take-Overs. 
Transportation Research Part F: Traffic Psychology and 
Behaviour 64: 532-551.

30. Naujoks F, Purucker C, Wiedemann K, Neukum A, Wolter 
S, et al. (2017) Driving performance at lateral system 
limits during partially automated driving. Accident 
Analysis & Prevention 108: 147-162.

31. Dunn NJ, Dingus TA, Soccolich S, Horrey WJ (2021) 
Investigating the Impact of Driving Automation Systems 

on Distracted Driving Behaviors. Accident Analysis & 
Prevention 156: 106152.

32. He D, Kanaan D, Donmez B (2021) In-Vehicle Displays 
to Support Driver Anticipation of Traffic Conflicts in 
Automated Vehicles. Accident Analysis & Prevention 149: 
105842.

33. Vogelpohl T, Kühn M, Hummel T, Vollrath M (2019) 
Asleep at the Automated Wheel-Sleepiness and Fatigue 
during Highly Automated Driving. Accident Analysis & 
Prevention 126: 70-84.

34. Du N, Zhou F, Pulver EM, Tilbury DM, Robert LP, et al. 
(2020) Predicting Driver Takeover Performance in 
Conditionally Automated Driving. Accident Analysis & 
Prevention 148: 105748.

35. Wang J, Zhang, L, Huang Y, Zhao J (2020) Safety 
of Autonomous Vehicles. Journal of Advanced 
Transportation.

36. Shladover SE (2017) Road Vehicle Automation: 
Challenges and Opportunities. California PATH Program, 
University of California, USA. 

37. Easa SM (2020) Transportation Ergonomics for 
Self-Driving Automated Vehicles: Outdated or 
Necessary? Ergonomics International Journal 4(4): 1-8.

https://medwinpublishers.com/EOIJ
https://www.tandfonline.com/doi/abs/10.1207/S15327566IJCE0503_5
https://www.tandfonline.com/doi/abs/10.1207/S15327566IJCE0503_5
https://www.tandfonline.com/doi/abs/10.1207/S15327566IJCE0503_5
https://journals.sagepub.com/doi/10.1177/0018720812442087
https://journals.sagepub.com/doi/10.1177/0018720812442087
https://journals.sagepub.com/doi/10.1177/0018720812442087
https://journals.sagepub.com/doi/10.1177/0018720812442087
https://journals.sagepub.com/doi/10.1177/0018720819893429
https://journals.sagepub.com/doi/10.1177/0018720819893429
https://journals.sagepub.com/doi/10.1177/0018720819893429
https://journals.sagepub.com/doi/10.1177/0018720819893429
https://journals.sagepub.com/doi/10.1177/0018720819893429
https://journals.sagepub.com/doi/10.1177/0018720819893429
https://www.sciencedirect.com/science/article/abs/pii/S1369847818302559
https://www.sciencedirect.com/science/article/abs/pii/S1369847818302559
https://www.sciencedirect.com/science/article/abs/pii/S1369847818302559
https://www.sciencedirect.com/science/article/abs/pii/S1369847818302559
https://www.sciencedirect.com/science/article/abs/pii/S1369847818302559
https://www.sciencedirect.com/science/article/abs/pii/S000145751730307X
https://www.sciencedirect.com/science/article/abs/pii/S000145751730307X
https://www.sciencedirect.com/science/article/abs/pii/S000145751730307X
https://www.sciencedirect.com/science/article/abs/pii/S000145751730307X
https://www.sciencedirect.com/science/article/abs/pii/S0001457521001834
https://www.sciencedirect.com/science/article/abs/pii/S0001457521001834
https://www.sciencedirect.com/science/article/abs/pii/S0001457521001834
https://www.sciencedirect.com/science/article/abs/pii/S0001457521001834
https://www.sciencedirect.com/science/article/abs/pii/S0001457520316626
https://www.sciencedirect.com/science/article/abs/pii/S0001457520316626
https://www.sciencedirect.com/science/article/abs/pii/S0001457520316626
https://www.sciencedirect.com/science/article/abs/pii/S0001457520316626
https://www.sciencedirect.com/science/article/abs/pii/S0001457518301179
https://www.sciencedirect.com/science/article/abs/pii/S0001457518301179
https://www.sciencedirect.com/science/article/abs/pii/S0001457518301179
https://www.sciencedirect.com/science/article/abs/pii/S0001457518301179
https://www.sciencedirect.com/science/article/abs/pii/S0001457520315682
https://www.sciencedirect.com/science/article/abs/pii/S0001457520315682
https://www.sciencedirect.com/science/article/abs/pii/S0001457520315682
https://www.sciencedirect.com/science/article/abs/pii/S0001457520315682
https://www.hindawi.com/journals/jat/2020/8867757/
https://www.hindawi.com/journals/jat/2020/8867757/
https://www.hindawi.com/journals/jat/2020/8867757/
https://medwinpublishers.com/EOIJ/transportation-ergonomics-for-self-driving-automated-vehicles-out-dated-or-necessary.pdf
https://medwinpublishers.com/EOIJ/transportation-ergonomics-for-self-driving-automated-vehicles-out-dated-or-necessary.pdf
https://medwinpublishers.com/EOIJ/transportation-ergonomics-for-self-driving-automated-vehicles-out-dated-or-necessary.pdf
https://creativecommons.org/licenses/by/4.0/

	_Hlk121319326
	OLE_LINK174
	_Hlk93250308
	_Hlk93250266
	_Hlk93249696
	_Hlk93249732
	_Hlk121239860
	_Hlk121175518
	_Hlk121215699
	OLE_LINK71
	OLE_LINK190
	_Hlk121218218
	OLE_LINK1
	_Hlk121220493
	OLE_LINK2
	OLE_LINK247
	OLE_LINK173
	OLE_LINK256
	_Hlk121247764
	_Hlk121264743
	OLE_LINK261
	OLE_LINK257
	OLE_LINK191
	OLE_LINK205
	OLE_LINK224
	OLE_LINK245
	_Hlk121936235
	_GoBack
	Abstract
	Introduction
	Human Drivers and Automation Levels
	Actors’ Differences Regarding Functional Layers
	Actors’ Differences Regarding Automation Levels
	Actors’ Differences Regarding Vehicle Technical Structures
	Driver Performance for Automation Levels

	Exciting Considerations
	Can Automation Impair Driving Performance?
	Driver’s Takeover Using Physiological Sensing
	Key Challenge: 390-Year Safety Standards

	Concluding Remarks
	References

