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Abstract 

Salt stress soil or water come to be the most problem and deficiency the crop yields, in spite of the fact that date palm 

(Phoenix dactylifera L.) can be tolerate high levels of salts, the acclimatized plantlets in the early stage facing stress just 

planted in the open field, however in the pre-acclimatization stage in vitro , also after acclimatization stage in the 

greenhouse these plantlets were adapted with different concentrations of salts NaCl, CaCl2 for helping them facing bad 

effects of salts in the fields, as well as many treatments can be done to ameliorate the bad effects of salts on the plantlets 

as hormons (IAA, GA3, cytokinins), yeast, amino acids, potassium K+ or Ca2+ and some of growth retardants, all of these 

treatments have important role to adverse bad effects of salts, enhancing growth as well as improving productivity of 

plants under salts stress.  
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Introduction 

Date palm (Phoenix dactylifera L.) which produced via 
tissue culture technique after acclimatization in the green 
house may be unable to confrontation the abiotic stress 
conditions when its cultured in the sustainable land i.e. 
salt stress, drought stress which caused bad effects on the 
plant growth characteristics as decreasing heights and 
length, leaves numbers, fresh and dry weights of aerial 
parts and roots. Na+- specific damage is associated with 
the accumulation of Na+ in leaf tissues and results in 
necrosis of older leaves. the date palm showed true 
halophytic adaptations to salt stress more than many 
other fruit trees [1], Soils classified to saline which 
saturated paste electrical conductivity (ECe) of 4 dS m-1, 
PH is less than 8.5, sodic soils defined that ECe of less than 
4 dS m-1, and pH exceeds 8.5 15% and saline-sodic soils 
have ECe ≥ 4 dS m-1, and their pH is less than 8.5 by their 
chemistry, morphology, and pH (2) [2,3], Date palms are 

tolerated salinity stress than other cultivated trees to 
4dSm-1 (EC (dSm-1) and a yield reduction per unit 3.6% 
[4], date palm is an important horticultural fruits in the 
arid and semi-arid regions and tolerant to salinity, which 
caused several types of damage such as growth inhibition 
and yield quality Del [5], date palms mostly found as trees 
growth in hot weather and salinity affected plants and 
some varieties of date palm can tolerate salinity levels up 
to 22000 ppm (EC 34 dS m-1) meanwhile their growth 
and yield productivity are affected, however, date palm cv 
[6]. Ruzaiz in vitro culture and offshoots tolerated salinity 
NaCl 1% , CaCl2, KCl at 0.2 M Al, date palm can tolerate 
abiotic stresses as drought, heat and soil salinity that 
markedly reduced fruits yields as well as the viable 
numbers of the date palm trees, 125 mM NaCl and higher, 
callus of date palm Phoenix dactylifera L [7]. cv [8,9]. 
Barhee, growth was inhibited; an increase in proline 
accumulation in response to increased salinity, proline 
accumulation was correlated to callus growth inhibition 
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[10], NaCl salt gave many bad effects etc., stunted growth, 
chlorosis of green parts, dry mass reduction and 
elongation as well as expansion growth of leaves [11], the 
weak plantlets of two other treatments (1.5 and 2.0%) 
NaCl were failed in growth and acclimatization of 
pineapple plantlets Hamed & Ali [12], Ibrahim [13], 
Abdallah, et al. [14] found that, 6000, 10000 and 14000 
ppm NaCl + CaCl2 2:1 by weight which added to MS 
medium in vitro of date palm cv. Sakuti and cv. Zaghloul 
derived by tissue culture after two years from 
acclimatization stage, decreased all vegetative growth of 
the plantlets linearly with increasing salts levels as 
shootlet length, number of leaves, survival percentage of 
rooting stage, also decreasing vegetative characters in the 
rooting stage, moreover these plantlets were transferred 
into greenhouse after pre-acclimatized and all vegetative 
characters and acclimatization survival percent were 
significantly decreased with increasing salts, anions and 
cations reduced plant growth root and shoot development 
and yield morphological parameters like plant height, leaf 
production, root length and collar girth of different 
varieties which subjected to high salinity irrigation 
showed differential responses (56) long term irrigation 
with very high EC of irrigation water (8 and 12dSm−1) 
severely reduced growth and yield of date palm cv [15-
19]. Medjool NaCl from 50-250 mM supplemented in MS 
media of date palm cvs Barhi’, ‘Zaghlool’ and ‘Barban 
which were affected by salt stress as decreasing of root 
growth particularly with high level, while Zahdi’ and 
‘Majhool’ exhibited higher tolerance [20-23]. 
 

Effects of Salts Stress on the Chemical 
Contents  

Ions 

reduction in K + concentration in plant tissue due to 
the antagonism of Na + and K + at uptake sites in the roots, 
the influence of Na + on the K + transport into xylem or 
the inhibition of uptake processes, NaCl in the soil 
solution , the levels of K in plant were reduced related to 
the antagonism between Na and K after evaporation of 
salty water (Ca2+, Mg2+ and Na+) Ca2+ and Mg 2+ were 
precipitate to carbonate remain Na+ in the soil increased 
availability of Na and Cl, under salt stress contribute to 
reduced uptake of N, P, and K salinity stress by increasing 
concentration of Na+ in the soil, Na+ ion competes with 
K+ for the transporter as they both share the same 
transport mechanism, thereby decreasing the uptake of 
K+, Sodium, K+ and Cl- were the main inorganic solutes 
that contributed to osmotic adjustment, Na+ replaced K+ 
as the main cation, particularly in the proximal region of 
the growth zone, K+, Ca2+ and K+/Na+ ratio in canola 

decreased by salt stress, but significantly increased of Na+ 
and Cl- content in the roots, shoots and leaves, N/K+, 
K+/Na+ ratio, Ca2+ and Mg2+ content of date palm cvs , 
Khalas, Madjol and Barhy young leaves, stem and roots 
were decreased with increasing levels of salinity (200 and 
400mM) , while increasing of Na+ and Cl- content [1, 2, 4 
and 6 dsm-1 (ds/m) on dwarf apple rootstocks (M.pomila) 
led to increased Na and Cl in leaves while decline in the K, 
N and Cu concentration in leaves of plants also reduction 
of P, Fe, B, Zn and Mn [24-31]. 

 
Affecting photosynthesis process and products as 

amino acids, enzymes: factors reduced photosynthetic 
rates i.e. enhanced senescence, changes in enzyme activity, 
induced by alterations in cytoplasmic structure and 
negative feedback by reduced sink activity more than 
alteration of photosynthetic pigment biosynthesis, (94), 
(95) [33], salinity associated with a marked inhibition of 
photosynthesis, reduction in water potential and 
accumulated Na+ and Cl- in the chloroplast which affects 
photosynthetic components such as enzymes, 
chlorophylls, and carotenoids and membranes which the 
primary sites of injury under stress, photosynthesis was 
the primary affected by salts and drought stress, Water 
stress induced stomatal closure, reduced net CO₂ 
assimilation rate and the intercellular CO₂ availability in 
mesophyll, also reduced the photosynthetic efficiency, on 
the other hand antioxidant enzymes and stimulated the 
production of antioxidant metabolites and preventing 
lipid peroxidation [32-39]. It was found that stress can be 
strongly affected enzymes in this respect many scientists 
showed that enzymes antioxidant activity proved to the 
mechanism tolerant salts as SOD and CAT which they 
found in cell compartments in stressed plants and 
ascorbate peroxidase (APX) have important function 
against oxidative stress [40], CAT activity in suaeda salsa 
increased under 200 mM NaCl [41] and peroxidase (POX) 
in rice [42], the increasing activity related to lowered 
H2O2 level and POX activity appears to be caused either 
by activation of existing enzymes isoforms, antioxidant 
enzymes catalase (CAT) and peroxidase (POD), , POX, APX 
were significantly higher under severe salt stress in 
Pancratium maritimum plants, protect plants against 
damage oxidative of NaCl (Sanaerirad [43] on 
Salsolacrassa) [44], In the date palm induction of enzymes 
as PdCAT, PdGR and PdMDAR were observed at NaCl 
(100mM, 200mM, 300mM and 400 mM 100 mM NaCl 
these observation suggest that antioxidative enzymes 
involved in either ROS detoxification or antioxidation, and 
have important role the tolerance of date palm to salt 
stress [45-47]. Protein synthesis and lipid metabolism are 
affected under stress, positive antioxidant response might 
be responsible for a higher tolerance to flooding stress in 
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Carrizo citrange Poncirus trifoliata L. Raf. x Citrus sinensis 
L. Osb. and Citrumelo CPB 4475 Poncirus trifoliata L. Raf. x 
Citrus paradisi L. Macf the photosynthesis and respiration 
rate of plants decreased under salt stress also total 
carbohydrate, fatty acid and protein content, moreover 
increasing levels proline was found, meanwhile Proline 
accumulation which is a known measure adopted for 
alleviation of salinity stress [48-52]. 
 

Stress Affecting Stomata and Pigments 

Under salt stress plants has to close their stomata due 
to water loss [53], stomatal closure induced by synthesis 
of ABA which act as ameliorative responses include 
maintenance of root water uptake, the synthesis of 
osmoprotective proteins Cl - -induces chlorotic toxicity 
due to impaired production of chlorophyll (Chl) [54], 
critical levels for toxicity to be 4-7 mg g −1 for Cl - -
sensitive species and 15-50 mg g −1 for Cl - -tolerant 
species [55], decreasing rate of photosynthesis occurred 
at high salinity, also inhibited cell expansion and cell 
division stomatal conductance and closure in Bruguiera 
parviflora, decreases in contents of chlorophyll (a), (b) & 
(a + b) carbohydrates, soluble proteins and Sofy & Fouda 
[56] on Helianthus tuberosus L.), these severe effect of 
stress on pigments according to the time of stress 
exposure [57], moreover demonstrated that the reduction 
in chlorophyll contents under salt stress caused by 
inhibitory effects of the accumulation ions Na+ and Cl- on 
the biosynthesis of the different chlorophyll fractions, 
Chlorophyll responsible for photosynthesis moreover 
under adverse conditions, chlorophyll contents is a good 
indicator of photosynthetic activity [58,59], assimilation 
of CO2 decreased also stomatal conductance and plant 
transpiration were reduced similarly in all three Lemon 
(Fino 49) salt treatments50 mM NaCl [60], under salt 
stress less chlorophyll contents and highly of 
accumulation of Na and Ca under salt stress 100-200 mM 
El- Bagoury, et al. [61] on Casuarina equisetifolia L.), total 
chlorophyll decreased with exposure to NaCl (20, 40, 60, 
80, and 160 mM) in WPM culture medium at 15 and 30 
days in Paulownia imperialis (Siebold & Zuccarini) and 
Paulownia fortunei (Seemann & Hemsley), proline content 
in P. imperialis significantly increased under 20 and 40 
mM NaCl The decrease in Chl content under salt stress is a 
commonly reported phenomenon were used as a sensitive 
indicator of the cellular metabolic state [62,63], salt soil 
resulted in 41% reduction in ch b compared with 75 and 
33% reduction of ch a under NaCl from 100 to 200 mM for 
14 days of Oryza sativa [64], salt stress the reduction in 
photosynthesis pigments related to increasing destructive 
enzymes as chorophyllase activity or by weakening of 
protein-pigment-lipid complex in addition stress can 

reduce cell division [64- 66], furthermore depressing of 
the rate of photosynthesis and related enzymes activity, 
suppresses chlorophyll synthesis [67].  
 

Reactive Oxygen Species (ROS) 

Salinity stress have severe injury caused by ROS is 
known as oxidative stress, which is one of the major 
damaging factors to plants, ROS cause peroxidation of 
polyunsaturated fatty acids in the membranes [68], which 
include the superoxide anion radical O2¯, hydroxyl radical 
OH¯ and (H2O2) hydrogen peroxide [69], antioxidant and 
enzymes as carotenoids, ascorbate, glutathione and 
tocopherols, superoxide dismutase (SOD), catalase (CAT), 
glutathione peroxidase (GPX), peroxidases, ascorbate 
peroxidase can inhibited damage were found by ROS 
under salts stress scavenging enzymes SOD, APX and POX 
improved tolerance to abiotic stresses as salinity which 
produced high levels of ROS [70,71], reactive oxygen 
species (ROS) responsible for cellular oxidative caused 
damage in cell machinery and chloroplast ROS which 
produced normally from cell metabolism however, these 
products under stress defected biomolecules and cell 
metabolism and led to cell death [72-75], ROS have 
important role in the plant cell to reduce forms of 
atmospheric oxygen, four electrons are required to 
oxygen reduction ROS results from the transference of 
one, two and three electrons, respectively, to O2 to form 
superoxide (O2·-), peroxide hydrogen (H2O2) and (HO·) 
hydroxyl radical [76], in addition, increasing ROS 
production result from stomatal closure, causing a 
decrease in CO2 concentration inside the chloroplasts, on 
the other hand ROS increase in the salt sensitive plants 
were removed by antioxidative mechanisms in the normal 
condition, but this removal can be impaired under salt 
stress [77,78]), excess amounts of ROS caused and cellular 
toxicity in citrus (168) [79], ROS, such as (singlet oxygen 
1O2), hydrogen peroxide H2O2, superoxide O2·- and 
hydroxyl radical HO·, are toxic molecules capable of 
causing oxidative damage to proteins, ROS detoxification 
are antioxidants as ascorbic acid (AsA) and glutathione 
(GSH), and ROS-scavenging enzymes as superoxide 
dismutase (SOD), ascorbate peroxidase (APX), catalase 
(CAT), glutathione peroxidase [80], ROS generated during 
metabolic processes damage cellular functions lead to, 
senescence and cell death, these bad effect of ROS can be 
scavenged by antioxidant enzymes such as superoxide 
dismutase, calatase, peroxidase, Polyphenoloxidase and 
Glutathione Reductase, under salt stress excessive ROS 
caused adverse effects that exhibited from interaction 
with macromolecules, Arabidopsis thaliana treated with 
300 mM NaCl for 72 h exhibited that plasma membrane 
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oxidation in the cellular injury by production of ROS 
which may be cause cell death [81-87]. 
 

Modified Stress by Different Treatments 

IAA, cytokinins tolerance plant to salinity by different 
mechanism i.e. osmotic stress tolerance, Na+ or Cl− 
exclusion, and the tolerance of tissue to accumulated Na+ 
or Cl− (16) [88], many attempts and modification 
treatments were done to decreasing these bad effects and 
trying to increasing yields under stress, osmoprotectants 
(proline, glycinebetaine, trehalose, etc.), plant hormone 
(gibberellic acids, jasmonic acids, brassinosterioids, 
salicylic acid, etc.), antioxidants (ascorbic acid ABA, 
glutathione, tocopherol, etc.), signaling molecules (nitric 
oxide, hydrogen peroxide, etc.), polyamines (spermidine, 
spermine, putrescine), trace elements (selenium, silicon, 
etc.) effective to mitigating the salt induced damage in 
plant [89-92], Phytohormones play important roles in 
regulating plant responses to stress which increased ABA 
and JA [93], numerous plant hormones as salicylic acid, 
abscisic acid, jasmonic acid and ethylene play a significant 
role in altering plant growth morphology in response to 
stress [94-95], wheat seedlings were more sensitive to 
water stress, meanwhile cytokinin activity (6-
benzylaminopurine, thidiazuron, cartolin 2, and cartolin 4) 
played a protective role as increasing the stability of the 
photosynthetic machinery under conditions of water 
deficiency, enhancing cytokinin levels could plants 
reduced growth rates maintained by abscisic acid 
accumulation in stressed tissues [96-97].  

 
5-aminolevulinic acid (ALA) have PGR properties 

which promoting plant growth under normal 
environments and stressful conditions and enhance plant 
tolerance to drought when applied at low concentrations, 
ALA showed to be essential biosynthetic precursor of 
tetrapyrrole compounds such as heme, cytochromes and 
chlorophyll, ALA as foliar spray 0.18-0.6 mM increased 
photosynthetic carbon fixation and reduced dark 
respiration [98-100]. ALA-based fertilizer Pentakeep-v 
improves salt tolerance in date palm seedlings by 
increasing photosynthetic assimilation, IAA from 54 to 97% 
significantly increased Wheat root growth under 100 mM 
NaCl , ALA at low concentrations can promote plant 
growth as exogenous application on spinach (Spinacia 
oleracea), Brassica napus and cucumber seedlings (201) 
[101-107], pretreatments of ALA at 2.11 μM or 2.57 μM 
The ALA under 50 mM NaCl increases of total chlorophyll 
and antioxidative activities of (CAT) catalase, (APx) 
ascorbate peroxide, (GR) glutathione reductase and (SOD) 
superoxide dismutase [108]. 

 

IAA, application of auxin IAA increased hypocotyls 
length, seedling fresh and dry weight and hypocotyls dry 
weight of wheat plants under salinity, in Z. mays plants, 
foliar application of IAA, especially at 2 mM, counteracted 
some of the salt induced adverse effects by enhancing 
essential inorganic nutrients as well as by maintaining 
membrane permeability, growth promotion in maize 
plants was associated with increased photosynthetic 
pigment and leaf Na+/K+ ratio to increased salt tolerance 
of plants which come out as growth and development can 
be regulate by cytokinins (CKs), auxins (AUXs), 
gibberellins (GAs), JA, brassinosteroids (BRs), ABA and SA 
[109-111]. Exogenous application of tryptophan and 
nicotinic acid at 200 ppm under 3000 and 6000 ppm salts 
can be enhancing growth parameters as height and fresh 
weight of Allium cepa L. [112, 113]. 
 

GA3  

Plant growth regulators as GA3, Zeatin and ethephon 
can alleviate bad effect os salts on germination and 
growth parameters of Ceratoides lanata, Salicarnia 
pacifica, Allenrolfea accidentalis [114], pre-treatment 
seeds with GA3, IAA, Zeatin and Cytokinins increased and 
development of plant growth under salt stress [115], seed 
treatment of Trichocereus terscheckii (Cactaceae) with 
gibberellic acid improved germination percentage under 
saline conditions [116], Gibberellic acids (also called 
Gibberellin A 3 , GA, and GA 3 ) are generally involved in 
growth and development; they control seed germination, 
leaf expansion, stem elongation and flowering (Magome et 
al. 2004, Kim and Park 2008), GA3 at 20,25 and 30 mg/l 
ameliorated bad effect of salinity stress at 10000, 14000 
and 16000 ppm under GA3 at 20 and 25 mg/l the shoot 
and root length, number of leaves and roots were 
increased under levels of salinity Table 1 and 2, salt stress 
increased Na, Ca and Cl Table 3, salts decreased survival 
acclimatized while GA3 increased this percent [117], GA3 
treatment in L. esculentum reduced stomatal resistance 
and enhanced plant water use at low salinity [118]. GA 3 -
priming-induced increase in T. aestivum grain yield was 
attributed to the GA 3 -priming-induced modulation of 
ions uptake and partitioning (within shoots and roots) 
and hormones homeostasis under saline conditions [119] 
[119-120], GA3 at 100 μM. Enhancing growth parameters 
of Barley and Wheat cvs under NaCl at 100 and 300 mM 
[121]. 

 
ABA (Abscissic acid) Osmotic stress induces and 

enhanced ABA biosynthesis as well as increased 
accumulation of the key ABA biosynthesis enzyme (NCED) 
9-cis-epoxy-carotenoid dioxygenase [122], ABA have 
important role in plant osmotic stress response by a 
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decreased pH led to induction of turgor loss in stomatal 
guard cells leading to stomatal closure [123], High 
K+/Na+ ratio was observed due to abscissic acid (ABA) 
treatment given to common bean plant that seems to limit 
sodium translocation to shoot [124].  
 

Amino Acids 

Protects the higher plants against osmotic stresses not 
only by adjusting osmotic pressure by many compatible 
solutes which are small molecules, water soluble and 
uniformly neutral with respect to the disturbance of 
cellular functions, even when present at high 
concentrations as well as [125], carbohydrates in stress 
mitigation involves osmoprotection, carbon storage also 
increases the level of reducing sugars as sucrose and 
fructans [126], Compatible osmolytes and proteins used 
as potential biochemical which were useful in the salt-
resistant of plant cells [127], photosynthetic apparatus 
protection [128], and reduction of ROS [129], Proline 
accumulation rises in response to salinity stress also 
involved in cellular structures Solomon, et al. [130] on 
Tamarix jordanis), induced significant increase in 
chlorophyll and total soluble sugars contents , proline 
protect plants under stress by stabilizing many functional 
metabolism as complex II electron transport, membranes, 
proteins and enzymes such as RuBisCo [131], Proline 
improves salt tolerance in Nicotiana tabacum plants by 
increasing the activity of enzymes involved in the 
antioxidant defense system [132], by protecting the 
photosynthetic apparatus [133,134], exogenous Pro 5 mM 
and 100 mM NaCl in Citrus sinensis ‘Valencia late’, 
increased growth of this salt sensitive citrus cell line 
stated that, the applications of proline 30 and 50 ppm 
were diminished the harmful effects of salt stress 16000 
[135-137], 18000 and 20000 ppm NaCl + CaCl2 as plant 
height (cm), number of leaves/seedling, root length (cm), 
roots number/seedlings and fresh and dry weights of 
Phoenix canariensis , significant increase in total amino 
acids Na, Ca and total amino acids obtained by the 
treatment 20000 ppm, In addition yeast have important 
components that have increasing growth which can 
ameliorated bad effects of salts as application of yeast and 
amino acids had significantly ameliorated the harmful 
effects of salinity which accompanied by markedly 
increase in all studied growth parameters plant height, 
leaves numbers, fresh and dry weights of leaves 
particularly at 50 cm/l yeast and 6 cm/l amino acids 
compared to control treatment (salts only) [138]. Na, Ca 
and Cl were increased, while under salts chlorophyll a and 
b decreased under salt stress while increased with yeast 
and amino acids, closely positively relation between salt 
stress and the anti - oxidative enzymes catalase (CAT) and 

peroxidase (POD) which was significantly enhanced in the 
presence of salinity levels, antioxidant enzymes were had 
the defense system for salt tolerance in a lot of plants. 

 
Glycinebetaine (GB) and putrescine, glycine betaine 

protects the cell by osmotic adjustment [139], one of 
compatible solutes that has an osmoprotective function 
and improve salt stress tolerance in most crop plants [140] 
GB may have a positive impact on both absorption and 
translocation of monovalent cations in salt-stressed, the 
positive effect of exogenous GB was associated with 
reduced Na + accumulation and with the maintenance of K 
+ concentration, triggering the antioxidant defense and 
also glyoxalase System [141-142] , polyamines a foliar 
spray minimize the adverse effect of salinity [143], 
furthermore, foliar application of putrescine (1.25 mM) 
accumulation of putrescine under salt stress, the possible 
physiological role of putrescine in alleviating stress 
damage [144], organic metabolite soluble in water and 
non-toxic at high concentrations which can potentially 
play a protective role against salt stress [145], it has 
found that arginine and GB can adverse bad effect of salts 
4500, 15000, 3000, 4500 and 6000 ppm by stabilized 
proteins also the main function that protects the 
photosynthesis system from damage [146] on Mung bean 
(Vigna radiate L and Cha-Um & Kirdmanee [147], growth 
and nutrients of citrus rootstock Karna khatta ( Citrus 
karna Raf.) were enhancing with putrescine and 
paclobutrazol application under salt stress [148,149]. 
Jasmonic acid (JA) and its methyl esters are ubiquitous in 
plants and have hormone properties. Jasmonates found as 
important roles in salt tolerance, SA and JA are 
synthesized in the osmotically stressed mesophyll cells of 
leaves under regulation of ABA [150], jasmonic acid at 30 
μM enhancing tolerance of rice under 40 mM of NaCl 
[151-152], these are important cellular regulators 
involved in diverse developmental processes, such as seed 
germination, root growth, fertility, fruit ripening, 
senescence and stomatal closure induced of JA in roots of 
citrus under drought stress conditions lead to progressive 
ABA accumulation in the plants which will induce later 
plant responses [153-157], Antioxidant (Ascorbic acid or 
Ascorbate (AsA), Citric acid or Vitamin C) and Glutathione 
(GIT): is an important antioxidant in plant tissue which is 
synthesized in cytosol of higher plants primarily from 
conversion of d -glucose to AsA. AsA has been shown to 
have an essential role in several physiological processes 
in plants, including growth, differentiation, and 
metabolism. It functions as a reductant for many free 
radicals, thereby minimizing the damage caused by 
oxidative stress. Plant with higher amount of AsA content 
showed better protection against oxidative stress. 
Ascorbate influences many enzyme activities, Citric acid 
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consider as one of non -enzymatic antioxidants which act 
to eliminate free radicals produced in plants under stress 
[158-159], AsA (Ascorbic acid) plays an important role in 
plant stress tolerance. Under stressed condition plants 
showed different capacity of AsA metabolism which is due 
to the variation of AsA synthesis and regeneration. 
Different studies showed that AsA content in leaves of 
stressed plants tends to increase with increasing levels of 
salt stress reported that AsA concentration in leaves of 
Momordica charantia increased under NaCl stress as 
compared to control. Increase in AsA concentration due to 
salinity was reported by other researchers [160-162], it 
has been observed, tocopherols and ascorbic acid 
application provided enhanced tolerance to salt stress 15 
ds/m also decreased the leaf senescence [163,164], 
exogenous application of AsA influences many enzyme 
activities and minimizes the damage caused by oxidative 
processes through a synergic function with other 
antioxidants [165-167], Glutathione (GIT) is a tripeptide 
(α-glutamylecysteinyl glycine), non-protein present as 
well as non-enzymatic antioxidants exhibited to improve 
seed germination and seedling growth under salt stress 
scavenge oxygen species reported that the application of 
vitamin C was effective to mitigate the adverse effect of 
salt stress on plant growth due to increased leaf area, 
improved Chl and Car contents [168,169], enhanced Pro 
accumulation and decreased H 2 O 2 content. In addition, 
application of ascobin with different concentrations not 
only mitigated the inhibitory effect of salt stress in both 
wheat cultivars, and increases in IAA, GA3, cytokinins, 
photosynthetic pigments, total carbohydrates and 
polysaccharides contents Mervat, et al. [169] recently, 
exogenous 1mM of ascorbic acid with 3 mM NaCl on 
tomato improved and ameliorated bad effects of salts 
stress as chlorophyll a and b, shoot and root length and 
fresh and dry weights of shoots [170,171].  

 
Salicylic acid (SA) is a common plant-produced 

phenolic compound and a potential endogenous plant 
hormone that plays an important role in plant growth and 
development. The role of SA is intensively studied in plant 
responses to biotic stress. SA application under salt stress 
enhancing synthesis of chl a, b and carotenoids, 
maintained membrane integrity also led to less contents 
of Ca2+ and act to accumulate K+ and soluble sugars 
which caused increasing of photosynthesis process 
[172,173], Arabidopsis tolerance salinity with SA by 
restoring membrane potential and preventing salt-
induced K+ loss from guard cell outward rectifying K(+) 
(GORK) also SA can upregulation of H+-ATPase activity, 
which improving K+ retention during salt stress moreover 
pretreatment of SA can reduce the concentration of 
accumulated Na+ in the shoot [174], also SA caused 

accumulation of ABA and IAA [175], another methods as 
(soaking the seeds prior to sowing, adding to the 
hydroponic solution, irrigating, or spraying with SA 
solution) have been shown to protect various plant 
species against abiotic stress by inducing a wide range of 
processes involved in stress tolerance mechanisms via 
enhancing activity of antioxidant enzymes Salicylic acid 
can enhancing antioxidant enzymes activity i.e. POD, DOD 
and SOD in tomato as spraying under drought and salinity 
stress A foliar spray of SA at 1.00 mM promoted the plant 
growth under 50, 100, or 200 mM NaCl , activity of 
antioxidant enzymes, as catalase [176-181], peroxidase, 
and superoxide dismutase, were enhanced by SA 
treatment Aftab, et al. [182], Habibi [183], Misra & Misra 
[184]on Rauwolfia serpentina ), [185-186], salicylic acid 
application 0.75, 2.5 and 5.0 mM improved tolerance of 
Eucalyptus globulus by improving water potential with 
increasing photosynthetic rate, soluble sugars under 
water deficit 5% and chlorophyll a Jesusa, et al. [187], 
Nimir, et al. [188] on Sorghum bicolor), in this respect 
proved that, salicylic acid at 400 ppm and IAA at 30 ppm 
were enhanced growth estimations i.e. plant height, 
leaves numbers, fresh and dry weights of leaves. Whereas 
these parameters were significant reduced under salts 
14000 ppm NaCl, chlorophyll a and b was decreased, At 
saline conditions, increasing of, proteins, catalase 
activities (CAT) and peroxidase activities (POD) which act 
as defense effects in the plants exposed to salinity stress, 
Na+, Ca2+, Cl- and K+ leaf concentrations were rising 
under 14000 ppm NaCl [189].  

 
different ions can ameliorated bad effect of salt stress: 

supplemental Ca alleviates the inhibitory effect of salt on 
cotton root growth by maintaining plasma membrane 
selectivity of K over Na [190], adding at least 5-10 mM Ca 
to the medium for salinities of 100-150 mM NaCl, to 
counteract the inhibitory effect of high Na concentrations 
on growth [191-192], Supplementing the Ca2+ can 
alleviates growth inhibition by salt in glycophyte plants. 
Ca2+ sustains K+ transport and K+/Na+ selectivity in 
Na+-challenged plants Sohan, et al. [193] Ca2+ can be 
ameliorated bad effect of stress as rising shoot growth 
and root elongation, as well as reduced Na+ accumulation 
and increasing uptake of K+, however this effect related to 
its function of membrane and cell elongation and division 
[194,195].  

 
(S)sulphur date palm cvs Sewy, Zaghloul and Hayany 

treated with 1088 ppm soil salinity with soil addition of 
sulphur 100 mg/l, spraying of citric acid 500 ppm and 
salicylic acid 100 ppm, effective microorganisms (EM) 50 
ml/tree/year, humic acid 50ml/tree/year, compost 
enriched with actinomyces 5 kg/tree/year and filter mud 
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5 kg/tree/year all of these anti salinity can be ameliorated 
the adverse effect of salinity on bunch numbers and 
weight , TSS and sugars [196], sulphur at level of 200g 
caused a significant increase height, leaf area, number of 
leaves and girth of date palm cv. Berhi under saline 
treatment EC soil (15.93 dS m-1) and to EC water (4.55 dS 
m-1) Also, sulphur increasing total Chlorophyll, Dry 
weight, Carbohydrates, proline and soluble protein, 
peroxidase enzyme activities and (IAA) content [197,198]. 

 
N,K and P KH2PO4 can ameliorated effects of salts by 

improved ratio of Na/K in spinach, as well as KH2PO4 can 
correction the deficiencies of P and K that mostly found 
under salts stress, KNO3 at 250 mg/l increased weights of 
Lagentaria siceraria [199, 200], different levels of KNO3 
from 0.5 to 3.2 % improved growth of Sunflower under 
150 mM NaCl also increased photosynthesis rate [201], 
existence of 50 mM NaCl potted plants Supplemented 
with nitrate KNO3 at 10 mM that increased leaf number 
and area Citrus reticulate × Citrus limetta] 
(Valencia/Bakraii) and Carrizo citrange [C. sinensis × 
Poncirus trifoliata] (Valencia/Carrizo), stem elongation, 
Chl contents and stimulated photosynthetic activity, from 
this nitrate ameliorated the deleterious effects of NaCl 
stress Phosphorus fertilization reduces of Na+ in shoots 
and increased growth and yield in rice and sunflower 
[202,203], shoot and root fresh and dry weights, 
chlorophyll contents, different ion accumulation and yield 
components of wheat were increased when treated with 
spraying phosphorus at , 400, 800 mg/L or potassium in 

the presence of 150 mmol NaCl Khan, et al. [204], Rasmia 
& El Banna [205] on date palm.  

  
Selenium (Se) which stimulate the growth, the 

activities of SOD and POD, as well as the accumulation of 
water soluble sugar [206], however, Se at 5 and 10 m M 
significantly improved growth rate protecting the cell 
membrane against lipid peroxidation and increased the 
photosynthetic pigments and Protein contents, in addition 
Se proved as stimulate enzymatic and non-enzymatic 
antioxidant, reduce Na + uptake and enhanced K + uptake, 
K + : Na + selectivity under stressful condition, [207,208], 
Si was mitigate salinity stress by enhancing Na + 
exclusion and decreasing lipid membrane peroxidation 
through stimulation of enzymatic and non-enzymatic 
antioxidants Silicon, the silver bullet for mitigating biotic 
and abiotic stress [209,210], and improving grain quality, 
in rice? Environmental and Experimental Botany 120:8-
17), addition of Si to salt stressed plants alleviated the 
adverse effects of NaCl on growth Glycine max, as it 
enhanced endogenous GA3, while reducing the levels of 
ABA and Pro found that Si supplementation at 0.5, 1, 1.5, 2, 
2.5 mM into salts at 120 mM significantly improved fresh 
and dry weight [211-212], protein contents and catalase 
activity and numbers of trichome and stomata. of Borago 
officinalis L, exogenous of selenium at 0, 2, 4, 8, 16 μM 
enhancing growth and performed as antioxidant by 
inhibiting lipid peroxidation and increasing in SOD and 
POD enzymes activity with 100 mM NaCl Keling, et al. 
[213] on Cucumis melo L. and Hasanuzzaman, et al. [214], 
Nawaz, et al. [215], [216-230]. 

 
 

 

Figure 1: Salinity effects. 
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Conclusion 

In general salts (soil or water) ranked as the most 
stress affected growth and productivity of many crops in 
all culture area of the world, this stress can modified by 
different treatments as IAA, GA3, yeast, amino acids, 
minerals as potassium, calcium in addition some of 
growth retardants, all of these treatments can be 
enhancing growth and developments of crops under 
stress.  
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