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Abstract

Elder people need highly digestible foods that can also provide health benefits even to those suffering from chronic diseases. 
Furthermore, such foods should be palatable as well as familiar for elder consumers. Fish is a high-protein, low-fat food that 
potentially provides a range of health promoting effects which may be further improved with suitable approaches in the 
production systems. The present mini-review intends to report possible aquaculture interventions to enhance the positive 
impact of fish on elder health and to promote its function in terms of prevention and recovery of specific diseases. Some fish 
species during their lifespan experience periods of food restrictions that can be mimicked in aquaculture without affecting 
fish welfare. Under these circumstances fish can modify the fatty acid profile and increase the use of muscle proteins to fulfill 
their energy requirements, by activation of muscle endogenous proteases. Degradation of muscle proteins can enhance their 
digestibility and possibly the release of encrypted bioactive peptides, showing a plethora of biological actions, including the 
antihypertensive activity. The degree of myofibrillar protein degradation and the fatty acid profile of fish fillet can then be 
managed by suitable and sustainable feeding protocols in the context of farming conditions.
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Eating Fish for Healthy Aging

According to current estimations, people in the world are 
living longer. Most of the evidence indicates that reduction 
in mortality is due to advances in health services, medicine, 
wealth and income, nutrition, behavior, and education 
[1]. However, longer lives do not mean healthier lives, 
since increasing age is the major risk factor for developing 
many major chronic diseases. Anyway, aging, which has 
been defined as a multidimensional process characterized 

by several physical, social and physiological alterations 
occurring in humans during the course of life [2], is not in 
itself a disease and does not inevitably result in a decline in 
health status or function [3]. In fact, the elderly are a very 
heterogeneous group with respect to health and functional 
status and many factors contribute to successful aging [3]. 
It has been shown that aging is malleable to specific types of 
genetic mutations, diet, and drugs, which can extend lifespan 
and improve health during aging [4]. In particular, diet seems 
to have a much more pervasive and prominent role than 
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previously thought in modulating mechanisms of aging and 
its associated diseases [5]. Many studies have highlighted 
the association among low energy intake, inadequate intake 
of protein and vitamin D, and an increased risk of frailty 
development [6,7]. Thus, improvement in nutrition could 
provide health benefits to older people and many age-related 
diseases and conditions can be prevented, modulated or 
ameliorated [8].

In the elderly nutritional deficiencies can result from 
the physiological decline in food intake, which is very 
common among older people [2]. Hence, food for the elderly 
should be palatable as well as familiar for these consumers. 
Encouraging older adults to prepare meals can also increase 
appetite and food intake, and providing opportunities for 
older adults to eat a wide variety of foods, in the company of 
others, is a simple strategy to increase food intake [8].
 

Consuming food rich in nutrients and antioxidants 
has the potential to prevent the majority of the age-related 
disorders that impair the quality of life. In fact, recent 
evidences suggest that older adults need to intake more 
dietary proteins than do younger adults to support health, 
promote recovery from illness, and maintain functionality 
[7,9]. Concerns regarding health hazards related to high red 
meat intake have been increasing during recent decades, 
although restrictive recommendations should not be 
applied to subjects above 70 years of age [10]. Therefore, 
high-quality proteins from fish, containing essential amino 
acids in considerable amounts, can represent an important 
and healthier alternative to proteins from other animals. 
Interestingly, the dietary protein source appears to have 
specific protective properties in maintaining cardiovascular 
health [11]. This was demonstrated in a clinical trial where 
the intake of lean fish reduced cardiovascular lipid risk 
factors in healthy subjects more than the intake of non-
seafood proteins [12]. The gastrointestinal digestion of 
fish proteins can also result in the release of bioactive 
compounds associated with health benefits [13]. Fish, for 
its components and properties, is hence a matter of interest 
for health in aging populations. Traditionally, the long chain 
polyunsaturated omega-3 fatty acids (n-3 PUFAs), including 
eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids 
have been the primary components which may contribute to 
improving human health [14-16]. 

Evidence has been provided of potential benefits of n-3 
PUFAs consumption in the protection against the risk of 
developing cardiovascular disease (CVD) [17], although the 
achievement of optimal performance requires an appropriate 
quantitative composition and the proper proportions 
of delivered fatty acids [18]. Considering the metabolic 
competition between n-6 and n-3 PUFAs and their opposing 
properties [19], an optimal ratio of n-6 to n-3 PUFAs should 

be recommended as its alteration has been associated with 
health risks [20]. Moreover, fish consumption has a protective 
and anti-inflammatory function on skeletal muscle and its 
biologically active compounds, such as n-3 PUFAs, proteins, 
vitamins D and E, magnesium and carnitine help to maintain 
good muscle performance, preventing sarcopenia [21]. The 
role of dietary n-3 PUFAs as a link between musculoskeletal 
and cardio-metabolic health in older adults has been recently 
shown [22]. 

The decline of physiological functions among the 
elderly can also cause eating problems, which includes poor 
digestion. Despite its claimed digestibility, fish proteolysis 
has been found highly affected by elderly gastrointestinal 
alterations, with an important decline in leucine release 
[23]. Intervention on fish microstructure could improve its 
physiological interactions within the human gastrointestinal 
tract, providing functionality to fish over and above simple 
nutrition [24]. In order to provide these and other health 
benefits to older consumers of fish it may be reasonable 
to implement suitable interventions in the production 
systems by adopting specific approaches tailored to the 
human nutritional needs. Accordingly, the aim of the present 
mini-review was the description of possible aquaculture 
interventions aimed to enhance positive impact of fish on 
elder health and to promote its protective effects against 
specific diseases.

Cultured Fish Could Contribute to Elderly 
Health

Aquaculture’s rapid expansion and the decline of marine 
fishery resources highlight the relative contribution of farmed 
fish to the total fish consumption [25]. At present, farmed 
products are assuming greater significance as nutritious 
food in the context of low impact production systems [26], as 
predicted by the 2013 “Fish to 2030: Prospects for Fisheries 
and Aquaculture” [27]. Compared to extractive fishing, 
aquaculture enables influencing the characteristics of the 
final product by means of different management strategies 
[28]. In fact, the composition of the edible part of fish varies 
as a function of several factors, including species, strain, 
animal sexual maturity stage and size, as well as nutritional 
and environmental factors, such as oxygen availability, 
temperature, photoperiod, or pH [29-31]. Among them, food 
sources and nutrients are considered as primary contributors 
[32]. Novel technologies are now available to provide insight 
into the main underlying metabolic mechanisms of how fish 
adapt to feeds, and ultimately to characterize the influence of 
fish nutrition on fillet composition [33]. 

In the context of human health, the impact of fish feed on 
human nutrition is critical in that changes in feeding practices 
may affect the health-giving properties of cultured fish [34]. 
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For example, a significant increase in vitamin D content of the 
salmon fillet was observed following feeding Salmo salar of 
additional vitamin D [35]. Based on the finding that altering 
feed composition changes the nutritional content of farmed 
products, which in turn impacts on human nutrition, Fry et 
al. [36] proposed a conceptual framework which described 
the potential links between the use of feed ingredients in 
aquaculture and human health. Following this approach, 
aquaculture could play a significant role in the transition 
to efficient, resilient and health-promoting food systems. 
Evidence has been further provided regarding the inclusion 
of cultured fish as “functional food”, which can be specifically 
designed to deliver nutritionally valuable component(s) 
able to decrease the risk of certain diseases while improving 
health and wellness [37]. However, to achieve such 
outcomes, scientific research must effectively establish the 
bioavailability and efficacy of these compounds at levels that 
are physiologically achievable under typical dietary patterns 
[38]. On the other hand, an increasing amount of evidence 
suggests that these bioactive molecules might not act alone, 
but that their activity could be enhanced in the context of the 
natural food matrix, and needs to be characterized in such 
contexts [39]. As the nature of the food matrix can greatly 
affect the utilization of certain nutrients, the “whole food’ 
approach is certainly the preferential choice. As an example, 
the health-promoting effects of fish consumption on the 
risk of CVD most likely results from the interaction between 
nutrients in fish, supporting the idea that consumption of 
whole fish would have a much greater impact on human 
health compared to fish oil supplements [40,41]. It is thus of 
importance to evaluate possible aquaculture interventions, 
including feeding practices, in order to enrich fish nutritional 
properties specifically directed towards elder health, while 
maintaining the “whole food” approach, which corresponds 
to the needs of this increasing population group. 

A large extent of experimental data widely supports 
the observation that aquafeed is the main driver of the fatty 
acid (FA) profile in the edible tissues of farmed fish [42,43]. 
Consequently, FA profile of fish muscle can be manipulated 
by modifying FA composition of fish diets [44]. However, 
the recent trend in large scale substitution of fish oil with 
sustainable-alternative vegetable-origin lipid sources in 
aquafeeds has nearly halved the actual content of EPA and 
DHA in farmed fish [34]. In response to this evidence, in 
recent years several alternative raw materials have been 
identified for their inclusion in aquafeeds to optimize fish 
FA profile. Due to their minimal overall environmental 
impact, single cell-based dried biomasses have recently 
attracted the attention of the feed industry sector as a partial 
substitution for fish-derivatives [45-48]. Dried biomasses of 
certain marine microalgae, which are rich in n-3 PUFAs, have 
successfully shown to be effective as partial replacers for fish 
oil in feeding selected fish species [49-53]. A further advantage 

of microalgae feeding is their content in carotenoids [54]. 
The use of yeast biomass, engineered to produce high levels 
of EPA and treated to improve digestibility, could represent 
another strategy to increase the availability of n-3 PUFAs 
when fed to Atlantic salmon (Salmon salar) [55]. 

Adoption of alternative feeding procedures, including 
pre-slaughter starvation or reduced feed rations, is 
economically advantages to the fish industry as well as 
justifiable since many species of fish exhibit remarkable, 
although variable, resistance to starvation [56,57]. In fact, 
some wild fish species experience periods of fasting or food 
restriction for several reasons, such as the physiological 
state related to the reproductive season and difficulties in 
reaching the feed due to food availability and environmental 
limitations [58]. Therefore, manipulation of quality 
through different feeding management approaches can 
be achieved without compromising growth performance 
while addressing environmental issues [59]. As an example, 
a selective retention of n-3 PUFAs was observed in fillet of 
trout (Oncorhynchus mykiss), which had been subjected 
to a period of food deprivation prior to a fish oil finishing 
diet [60]. Final levels of n-3 PUFAs and FA preferences in 
energetic mobilization during feed restriction or deprivation 
varied among fish species, like sharpsnout seabream 
(Diplodus puntazzo) [61], black seabream (Acanthopagrus 
schlegeli) [62], dentex (Dentex dentex) [63], and Atlantic 
salmon (Salmon salar) [64]. The proportional contribution 
of the FA appeared also variable within the same species. 
Following changes in rainbow trout (Oncorhynchus mykiss) 
ration levels, SFAs were the most stable FA, while MUFA and 
n-3 PUFA were the most responsive ones [65]. In a more 
recent study, lower feeding rations resulted in rainbow trout 
(Oncorhynchus mykiss) muscle with lower relative amounts 
of SFA, while MUFA and PUFA were not affected [66]. 

As reported below in more detail, we reinforced the 
feeding management approach showing that seabream 
(Sparus aurata) food deprivation was an effective tool in 
obtaining good-quality fillets providing potential health 
benefits for hypertensive and gastroesophageal reflux 
disease (GERD) consumers [67].

Feeding Intervention and Fish Muscle 
Changes: Digestibility and Bioactive 
Peptides 

During feed restriction, fish experience transition from 
anabolic to catabolic states and can undergo alterations 
in muscle metabolism. Hence, the fish nutritional status, 
through the enhanced expression of autophagy related genes, 
modulates the catabolic conditions and eventually some 
skeletal muscle protein mobilization [68]. When protein 
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degradation exceeds protein synthesis as a consequence of 
feed deprivation, the muscle can undergo to atrophy [69,70]. 
Mechanisms of metabolic changes in skeletal muscle are 
different among fish species and also depend on the degree 
of feed restriction. In fact, specific proteins are preferentially 
deposited or mobilized in the muscle in response to varying 
feeding levels [71]. In rainbow trout (Oncorhynchus mykiss) 
the fasting-induced muscle degradation is associated with 
elevated expression of genes involved in the catheptic 
(cathepsin L, D and S) and collagenase proteolytic pathways, 
as well as with a marked depletion of muscle proteins, 
such as myosin heavy chain, and alpha-actin [72]. Similarly, 
an equally quite severe feed restriction (101 days of feed 
deprivation) allowed for the upregulation in Arctic charr 
(Salvelinus alpinus) muscle of mRNA transcripts regulating 
protein degradation via the autophagy pathway (cathepsin 
D and L) [73]. 

Partial restriction might overcome the undesirable effects 
associated with prolonged starvation, whilst maintaining 
some positive effects. In fact, moderate levels of restriction 
in feeding rates prior to slaughtering significantly decreased 
α-actinin in seabream (Sparus aurata), but no detrimental 
effects on the muscle firmness and structure, fillet yield, or 
nutritional quality were observed [28]. In rainbow trout 
(Oncorhynchus mykiss) feeding restriction, but not pre-
slaughter starvation provided the early delocalization of 
troponin from myofilaments, the appearance of an actin 26 
kDa-fragment and the detection of enigma protein, all being 
signs of impaired muscle integrity [74]. In seabream (Sparus 
aurata) a pre-slaughter starving regime (21 days of feed 
deprivation) resulted in the early degradation of myosin light 
chains (MLCs), whereas skeletal alpha-actin fragmentation 
was similar regardless of the pre-slaughter feeding system 
[67]. 

Muscle protein changes can therefore vary depending on 
a range of factors, and it is possible that some of them can 
be managed in order to modulate the catabolic conditions 
and eventually some skeletal muscle protein mobilization. 
Fish rearing conditions could represent a strategy for 
controlling the hydrolysis of specific proteins thus increasing 
their susceptibility to digestibility as well as the release of 
bioactive peptides with different potential health benefits for 
elderly. 

Protein Digestibility

Human digestion of food proteins is a complex process 
that involves the concerted action of several digestive 
proteases, which are closely controlled by hormonal and 
neural regulatory mechanisms [75]. Protein digestion starts 
with a short food chewing step in the mouth. The sequential 
activity of pepsin in the stomach and of the pancreatic and 

intestinal proteases in the small duodenum results in the 
liberation of amino acids and peptides. Amino acids are 
absorbed by the villus enterocytes through several systems 
that vary in solute specificity and ionic-dependency [76], 
while di/ tripeptides are efficiently absorbed by the peptide 
transporter 1 (PepT1) complex [77]. It has been evaluated 
that the absorbed dietary proteins in the blood stream are 
represented by about 90% amino acids and 10% dipeptides 
and tripeptides [76].

 A decline of certain gastrointestinal functions, including 
a reduced saliva production and mastication [78], alteration 
of gastric juice associated to atrophic gastritis [79], defects of 
pancreatic enzymes and bile [80] secretions, is not infrequent 
in the elderly, leading to maldigestion and malabsorption 
and typically resulting in protein deficiency. To counteract 
such conditions, a daily protein intake of 1.0-1.2 g per kg of 
body weight is recommended over 65 years [7]. Given the 
appropriate balance of essential and non-essential amino 
acids [81], fish is therefore well advisable for elderly. 

In addition to gastrointestinal conditions, inherent 
characteristics of food can influence the protein’s behavior 
during digestion. Because of the different protease 
specificity, the gastrointestinal transit time will determine 
the type of released peptides and their digestion/absorption 
[82]. Major factors are: i) the protein’s structural properties, 
e.g. the presence of hydrophobic β-sheet structures makes 
protein digestion difficult [83]; ii) the food source, e.g. in 
in vitro digestion static protocol, the skeletal muscle actin 
did not seem to be completely degraded in the pork, beef, 
and chicken samples, but it was degraded in the silver 
carp (Hypophthalmichthys molitrix) samples [84]; iii) the 
use of domestic and/or industrial processing methods, 
e.g. marinated and cooked salmon showed a decreased 
proteolysis compared to the raw salmon under suboptimal 
intestinal conditions [85].

Human and animal models provide the most complete 
data on the digestion of proteins, but have ethical restrictions, 
high costs and a long duration. To overcome these limitations, 
several in vitro simulated gastric and small intestinal digestion 
models have been developed based on the use of bioreactors 
mimicking the chemical and enzymatic conditions of each 
digestive compartment (static models) [75,84]. Recently, an 
international consensus of digestion conditions was reached 
and a standardized method was proposed greatly improving 
inter-laboratory reproducibility [86]. Dynamic systems, 
either mono- or multi-compartmental are also available, 
but their cost is very high [82]. Both approaches have the 
advantages of mimicking digestive disorders by properly 
setting digestion conditions, such as those possibly occurring 
in elderly [23,87]. 
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Interestingly, by using a static method, a recent study 
evaluated the protein digestibility of different cooked fishes 
(hake, seabass, salmon and sardine) subjected to elderly in 
vitro digestion model. As expected, proteolysis was markedly 
reduced in the elderly compared to healthy adults, but to 
a different extent depending on the fish species, salmon 
and seabass being the most affected ones (40 and 33%, 
respectively) associated with a markedly lower release of 
leucine [23]. 

Considering that raw products are growing in 
consumption popularity, we evaluated the impact of 
seabream (Sparus aurata) on the human gastric digestibility 
of raw fillets, using seabream starved for a period of 21 
days before slaughtering [67]. The proteolysis was tested 
by the above-mentioned standardized method of in vitro 
simulated gastric digestion under conditions relevant to the 
treatment of GERD, whose prevalence is strongly associated 
with increasing age [88]. Remarkably, in an altered gastric 
milieu, i.e. at pH 4 that may occur in drug-treated patients, 
gastric digestibility of the main myofibrillar proteins from 
starved fish fillets was much higher than that from fed fish. 
As a more pronounced degradation of MLCs has been found 
in starved fish at slaughter, the higher fillet digestibility has 
been attributed, at least partially, to the early MLCs cleavage, 
which could have increased the susceptibility of the myosin 
complex in relation to pepsin digestion. Therefore, further 
nutritional benefits can occur for the increasing number 
of people undergoing acid- suppressant therapy for GERD, 
thanks to the enhanced gastric digestibility of the main 
myofibrillar proteins, ascribable to seabream pre-slaughter 
starvation. 

Bioactive Peptides

Recent scientific evidence suggests that food proteins, 
including fish proteins, not only serve as nutrients, but can 
also modulate the body’s physiological functions through 
bioactive peptides that are encrypted inside the native 
protein sequences, from which are freed by the action of 
proteases. Bioactive peptides usually contain 2-20 amino 
acids and can provide health benefits positively affecting 
the majority of body systems [89,90]. Their actions could 
therefore minimize the risks of chronic diseases during aging.

Farmed and wild fish species, including many carp, 
salmon, tilapia, sardine and tuna, have been studied for the 
discovery of new bioactive peptides, which have been mainly 
isolated from protein hydrolysates generally obtained by 
treatment with microbe-extracted enzymes (e.g., alcalase, 
neutrase, thermolysin) [90]. Several techniques have been 
developed for the extraction and purification of bioactive 
peptides, since these govern the structure of the final 

product and its mode of action on the target site [90,91]. 
Their identification and structural characterization have 
been made possible thanks to the impressive development 
of high-resolution mass spectrometry, despite of the lack of 
complete fish-specific protein sequence databases [92].

Many in vitro biochemical assays, cell models, and 
animal models have been applied to test the bioactivity 
and the kinetics of fish bioactive peptides and to evaluate 
their therapeutic potential. Fish peptide extracts showed 
interesting bioactivities, including antibacterial for 
several marine teleost fish [93], antiviral for the polar fish 
(Pleunorectus americanus) [94], antioxidant for Pacific 
hake (Merluccius productus), satiety enhancer for smooth-
hound (M. mustelus), a-amylase inhibition and antidiabetic 
for Australian salmon (Arripis trutta), and antihypertensive 
activity (angiotensin-converting enzyme (ACE) inhibitor 
activity) for dried bonito, sardinelle (Sardinella aurita), 
Australian salmon, barracouta (Thyrsites atun), and silver 
warehouse (Seriolella punctata) [95,96]. Indeed, the majority 
of bioactive peptides are not specific and can be found in 
many species.

Among these bioactivities, ACE inhibitors are considered 
to provide better life expectancy, due to the high prevalence 
of hypertension and closely related cardiovascular events 
in aging [90]. The discovery of ACE inhibitors from fish 
started in the early 1990s in dried bonito (Katsuobushi), 
a traditional Japanese seasoning made of bonito muscle 
[97]. When the most efficient peptide (LKPNM), previously 
identified by in vitro studies, was tested in spontaneous 
hypertensive rats, it appeared that the parent peptide had to 
be hydrolyzed (LKP) to exert a health beneficial effect [98], 
highlighting that in vivo studies are crucial to evaluating the 
bio-efficacy of bioactive peptides. It is now widely accepted 
that the presence of a hydrophobic amino acid at either of 
the peptides’ terminals is vital for ACE-inhibition activity of 
a peptide, namely, phenylalanine, proline at C terminal and 
leucine, isoleucine, valine at N-terminal [90].

In spite of these promising findings, few studies have 
evaluated the digestion behavior of fish bioactive peptides 
in humans and the metabolic processes that occur before 
peptides reach their site of action [82]. Indeed, peptides 
need to resist the action of digestive enzymes during their 
transit through the gastrointestinal tract and need to 
cross the intestinal epithelial barrier to reach the target 
organs intact. Interestingly, to date, four different routes 
of peptides absorption have been described: paracellular 
diffusion, transcellular passive diffusion, transcytosis, 
and carrier-mediated transport by the PepT1 complex 
[82,99]. The hydrophobicity/hydrophilicity properties and 
molecular mass of the bioactive peptides govern the route 
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of absorption, e. g. PepT1 preferentially binds short-chain 
bioactive peptides, such as antihypertensive biopeptides 
[100,101], and the peptides transported by PepT1 show a 
higher bioavailability than those transported through the 
other routes [102]. 

The new peptidomics approaches permitted the 
investigation of fish muscle endogenous peptides by 
eliminating the need for purification of protein hydrolyzates 
[92]. The activity of endogenous proteases, especially calpains 
and cathepsins, has been associated with the hydrolysis 
of myofibrillar proteins during post-mortem storage, 
resulting in the softening of fish texture and the production 
of bioactive peptides [95]. In seabass (Dicentrarchus 
labrax), a recent study identified 119 peptide sequences 
with 17 of them having post-translational modifications 
typical of ante-mortem signalling pathways. Peptides were 
2-16 amino acid long and mostly hydrophilic and basic. 
Interestingly, the peptide mixture mainly contained anti-
hypertensive (ACE inhibitors) and hypoglycemic (Dipeptidyl 
peptidase-4 inhibitors) sequences [92], and many of them 
have been previously found in other species [103]. 

In seabream (Sparus aurata), we recently found [67] two 
anti-ACE, gastric-resistant dipeptides, which were previously 
isolated from a sardine muscle hydrolysate and acted as ACE 
competitive inhibitors [104]. One of them (VF) seemed to 
appear in larger amount in fish that experienced a 21 days 
starvation period before slaughtering, where a marked and 
selective degradation of MLCs was observed at slaughter. 
Consistently, a bioinformatic analysis by BIOPEP search 
engine showed that this dipeptide can potentially originate 
from MLCs. We calculated that, given the IC50 and the released 
amount of the dipeptide VF during simulated digestion, 
and assuming a complete absorption in the blood stream, 
a normal fillet portion from starved fish should provide 
a VF amount able to inhibit at least few point percentages 
of ACE activity [67]. Moreover, several other ACE peptides 
potentially present in fish fillets [92] could synergistically 
contribute to controlling the blood pressure.

All together, these findings highlight that fish can provide 
health benefits especially to elderly people suffering from 
hypertension. Moreover, in the concept of prevention and 
treatment of hypertension anti-ACE fish biopeptides, similar 
to other bioactive peptides, have shown to produce their 
effect with negligible cytotoxicity, making them potentially 
superior to synthetic drugs [90]. A better characterization 
of fish as source of health-promoting agents through new 
studies aimed at investigating the bio-accessibility and 
bioavailability of biopeptides in humans, would really 
contribute to greatly promoting its conscious consumption 
by the elderly. 

Conclusions

The nutritional properties of fish as such are extremely 
important for the promotion of the health in the aging. 
Aquaculture fish, which is easily available and cheap, can 
therefore be a source of health benefits for this population. 
As documented, fish functionalization through interventions 
in primary production could improve its characteristics, 
giving rise to additional health functions. In this sense, future 
research would be desirable in order to provide tailored 
products able to delivery specific nutrients that would 
contribute to the prevention, modulation or amelioration of 
the main pathologies affecting the elderly population. 
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