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Abstract

In agricultural crop production, herbicides are typically used to prevent or control weeds and other plant pathogens by 
reducing crop losses and maintaining high product quality. This brief overview sheds light on the level of toxicity, mechanisms 
of toxicity, health effects and prevention strategies. Three main levels of toxicity have been identified in herbicides: acute 
(short-term exposure), sub-chronic (medium-term exposure), and chronic (long-term exposure). These levels of toxicity have 
detrimental effects on humans, animals, and the environment. Herbicides must be handled and administered appropriately 
to minimize or completely prevent their negative side effects. It is recommended to manage herbicide to its minimum 
residue level while using them in agriculture. On the hand, certain mechanisms of action must be followed including contact, 
absorption, movement, toxicity, and death in order to be effective in management of weed by herbicides. This mechanism of 
actions of herbicides are also applied to humans and animals too. Improper usage of herbicides has adverse health effects 
on humans such as carcinogenic, cardiovascular, respiratory, hormonal, metabolic, cellular and neurological effects. In order 
to eliminate or minimize their effect the preventive safety mechanisms/strategies such as employing alternative and less 
herbicide-dependent cropping systems, properly using all certified personal protective equipment (PPE), proper packaging 
and package leaflet, proper labeling and giving general awareness about the use or handle of herbicide for farmers or any 
others who are not familiar with the use of herbicides must applied before or after handling of herbicides. In order to minimize 
or totally avoid the negative impacts of herbicides on humans, animals, and the environment, it is not just the responsibility of 
farmers but also of other stakeholders (agricultural experts, policymakers, etc.).
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Introduction

Agriculture must be intensified in order to meet 
local and global food demand [1-3]. It is strongly linked to 
dietary changes, instability in society, population growth, 
and climate change, all of which have a negative impact on 
food security and the environment and have a significant 
effect on both human health and the environment [4,5]. The 
sustainable development goal number two (SDG2), a goal 

that calls for the eradication of hunger and malnutrition by 
2030, is severely hampered by food insecurity in developing 
nations, particularly in Africa [6]. As a result of unsustainable 
agricultural practices like the uncontrolled expansion of 
arable land, low agricultural productivity in regions that are 
developing like Africa fails to meet the continent’s growing 
food demand. This leads to additional environmental 
issues like soil erosion, marine pollution, greenhouse gas 
emissions, and biodiversity loss [7]. Studies reveal that 
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future population growth is expected to be highest in areas 
with low agricultural productivity [8]. One strategy for 
address low productivity and food quality in order to meet 
the demand for food imposed by population growth and 
changing dietary patterns is the appropriate application of 
herbicides. Agriculture and livestock production are two 
methods of producing food. The extent to which other plant, 
animal, microbial, and parasitic biological systems compete 
with the species of interest for production for resources 
found within the environment has a significant impact on the 
yield of food production [9].
 

Weeds are a serious concern in agricultural systems 
across the world, causing huge economic losses through 
decreasing crop yields and quality of the harvest if they are 
not managed in proper manner [10,11]. For this reason, 
variety of plant protection chemicals such as herbicides have 
been used in agriculture; their potential to improve crop 
quality and productivity by eliminating weeds has grown 
significantly in recent decades [12]. Herbicides are phytotoxic 
compounds that are used to kill or inhibit the growth of 
weeds. They account for over 48% of total use of pesticides 
worldwide and their utilization showed to be the quickest 
and cheapest approach by avoiding by hand weeding, which 
was slower and needed more human resources, as well as 

lowering fuel expenses for machines [13]. 

They vary in their specificity. Herbicides that are either 
selective or non-selective are the two main categories of 
weed control [14]. Herbicides that are highly specific and best 
suited for eliminating one particular type of plant without 
destroying the others are known as selective herbicides (e.g., 
2,4-D, mecoprop, dicamba, etc.), which is an efficient way to 
manage weeds in fields or crops. However, these herbicides 
are ineffective against turf grasses. On the other hand, 
non-selective herbicides, such as glyphosate, glufosinate, 
paraquate etc., destroy every plant they come into contact with 
[14]. They serve in the clearance of railroad embankments, 
waste grounds, and industrial areas. Many factors, including 
plant physiology, soil topography, environment, application 
technique and timing of administration, influence how 
selective or non-selective herbicides are Varshney, et al. [15]. 
A successful weed removal and control strategy must take 
into account a number of factors, including site of action, 
detoxification, translocation, metabolism, and absorption 
[16,17]. Herbicides must pass through the following stages 
in order for their mode of action to be effective in killing 
weeds, as shown in the Figure 1 [18]. Herbicides’ mode of 
actions includes inhibiting, halting, disrupting, or mitigating 
normal plant growth [19,20].

Figure 1: Mechanism of actions of herbicides on weeds.

Herbicides, like other pesticides, can be classified into 
several classes based on their mode of action (i.e., selective 
herbicides that inhibit the growth of a specific type of weed 
and nonselective herbicides that control the growth of 
both wanted and unwanted plants), activity (i.e., control, 
suppression, crop safety, and defoliant), timing of application 
(e.g., preplant, preemergence, and postemergence), method 
of application (e.g., soil or foliar applied), mechanism of 
action (e.g., lipid synthesis inhibitors, amino acid synthesis 
inhibitors, growth regulators, photosynthesis inhibitors, 
pigment inhibitors, cell membrane disrupters, seedling root/
shoot growth inhibitors, nitrogen metabolism inhibitors), 
chemical structure (e.g., phenoxyacids, bipyridinium, 
dinitroaniline, chloroacetamide, carbamate, phenyl acetic 
acid, benzonitrile, urea, uracil, glyphosate, triazine, and 
phthalic acid) [21,22]. Herbicides can be administered before 
or after planting in agricultural fields. They are most often 
used in row-crop farming, where they are applied before or 
during planting to increase crop yield while reducing other 
vegetation. Although herbicides boost food production, 

there is a need to use them correctly in order to safeguard 
humans as well as the environment. Farmers’ understanding 
of herbicide application procedures, timing, and dose is 
frequently poor [23].
 

Herbicide exposure is regular, particularly among 
applicators who use these chemicals on daily basis [23]. 
Farmers in developing countries face enormous exposure 
risks due to the use of toxic chemicals that are banned 
or restricted in other countries, incorrect application 
techniques, poorly maintained or completely inappropriate 
spraying equipment, inadequate storage practices, and the 
reuse of old pesticide containers for food and water storage 
[24,25]. Toxic chemicals have serious adverse effects on 
humans, animals, and the environment. This is particularly 
the case of chemicals used in agriculture, such pesticides 
(herbicides, fungicides, insecticides, rodenticides) which 
have either been banned or severely restricted. Several 
agricultural food products were found to contain highly 
toxic pesticides, including anthraquinone, carbendazim, 
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malathion, omethoate, and chlorates. Pesticides that is 
extremely hazardous and persistent like DDT, HCB, and 
chlordecone, are mostly found in products that originate 
from animals [26]. In Europe, over 74 percent pesticides that 
were marketed in various regions of the world were banned 
from usage due to health and environmental concerns [26]. 
The residues were detected in 5811 food samples, which 
accounted for 6.2% of all the samples analysed. The bulk 
of these samples (75.2%) were plant-based items. Brazil, 
Malaysia, Morocco, Vietnam, India, Iran, and China are among 
the top 15 countries importing pesticides that are prohibited 
(severely restricted chemicals) in Europe. The countries of 
origin of the products are those where the highest frequency 
of banned pesticides (30-47% range) were found [26]. 
Herbicides enter the body by three major routes: dermal 
(via the skin or eyes), respiratory (via inhalation into the 
lungs), and oral (via eating) [23]. Certain precautions should 
be taken before, during, and after herbicide treatment. Most 
herbicides are very hazardous by nature since they are 
designed to kill specific organisms and hence pose a risk of 
damage. Herbicides and other pesticides continue to persist 
in our environment as a result of careless or intentional use, 
and the use of pesticides has raised serious concerns not 
only about actual effects on human health, but also about 
impacts on wildlife and sensitive ecosystems, as well as non-
target organisms [27,28]. This review article covers toxicity, 
mechanisms of toxicity, health effects, and some preventative 
strategies that we can use to minimize or avoid exposure as 
well as adverse health effects from the herbicides.

Toxicity and Hazard of Herbicides

Herbicides must be toxic or poisonous in order to be 
effective against the pests they are designed to control. 
They are poisonous and may negatively impact humans, 

animals, other organisms, and the environment. As a result, 
people who use pesticides or come into regular contact 
with them must understand the relative toxicity and actual 
adverse health effects of each product they utilize. There is a 
difference between the words “toxicity” and “risk” in terms of 
herbicide safety. Toxicity is defined as a material’s inherent 
toxic ability [29]. Toxicological studies assess a compound’s 
toxicity, which is expressed in quantitative terms such as 
LD50 or LC50 (lethal dose or concentration 50%, i.e., the 
dosage or concentration at which a material will kill 50% of 
a reference organism). The risk (or hazard) of a material is 
determined not only by its toxicity, but also by its possibility 
of exposure when applied.

 Toxicity is the ability of a substance to cause illness 
or even death, whereas risk (hazard) is the combination 
of toxicity and exposure (Figure 2). As therefore, the risk 
(hazard) associated with a certain pesticide is determined 
by its toxicity as well as the amount and type of exposure 
experienced. To estimate risk (hazard), information on both 
toxicity and exposure is needed. Normally, the actual for 
detrimental effects on humans caused by extremely toxic 
herbicide is greater than that of less toxic herbicide [29]. 
Other factors, such as the concentration of the herbicide in 
a formulation, the period of exposure to the herbicides, and 
the route of entry into the human body, are important in the 
potential for poisoning [30]. Clearly, a pesticides applicator 
has limited influence over an herbicide’s toxicity, but 
considerable influence over risks associated with its usage 
might be expected. For example, a sealed container of a highly 
toxic herbicide poses little risk before the seal is broken. 
Even if the container is opened, the risk is low, unless the end 
user is not wearing protective gear. The risk, however, can be 
severe if the container is damaged or leaking, or if suitable 
protective equipment is not used,

Figure 2: Risk is a combination of toxicity and exposure.

Classification of Toxicity Based on The Type of 
Exposure

Herbicides toxicity in humans may be classified into 
three groups based on the length of time exposed to the 
pesticide and the rate at which toxic symptoms appear 

[31]. As thus, workplace or environmental exposure may be 
classified as acute, sub-chronic, or chronic (Table 1). When 
a farmer is exposed to a single dosage of a pesticide, this is 
known as acute exposure, and the impact is known as acute 
toxicity. Acute toxicity describes how poisonous a pesticide 
is to an organism following a single short-term exposure.
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Type Meaning

Acute toxicity Occurring from a single incident of exposure (single short-term exposure)

Sub-chronic toxicity Occurring from repeated incidents of exposure over several weeks or months 
(intermediate exposure, normally less than the lifetime of the exposed organism)

Chronic toxicity Occurring from repeated incidents of exposure for many months or years (repeated 
long-term exposure, sometimes lasting for the entire life of the exposed organism).

Table 1: Types of toxicity based on the extent of exposure to herbicides.
Source: Damalas, et al. [32]

The signal words on the product label are selected based 
on the herbicide’s acute toxicity. Sub-chronic toxicity refers 
to a chemical compound’s actual to create hazardous health 
consequences for more than a year but less than the lifetime 

of the exposed organism. Chronic exposure occurs when an 
individual is regularly exposed to herbicide. This impact can 
be categorized as chronic dermal, chronic oral or chronic 
inhalation toxicity (Table 2).

Categories Signal word Oral (mg/kg) Dermal (mg/kg) Inhalation (mg/L)

I-Highly toxic Poison 0 to 50 0 to 200 0 to 0.2

II-Moderately toxic Warning 50 to 500 200 to 2000 0.2 to 2.0

III-Slightly toxic Caution 500 to 5000 2000 to 20000 2.0 to 20.0

IV-relatively non-toxic Caution 5000+ 20000+ 20+

Table 2: Types of acute toxicity measures and warnings. 
Source: Damalas, et al. [32]

Chronic toxicity is the capacity of herbicide to cause 
unfavourable health effects over an extended period of time, 
generally following repeated or continuous exposure, which 
may last for the entire lifespan of the exposed organism. 
This sort of pesticide toxicity is of concern not only to the 
general public, but also to individuals who work directly with 
pesticides, because to the possible exposure to pesticides 
found on/in food, water, and the air. It is often assessed in 
experimental the conditions after three months of either 
continuous or occasional exposure. A chemical with high 
acute toxicity may not always have high chronic toxicity. 
Chronic toxicity is an herbicide’s tendency for causing adverse 
health effects over an extended period of time. Continuous 
absorption of the same small dose every day can cause major 
chronic sickness or even death. Acute and chronic toxicity 
have dose-dependent effects, the higher the dose, the greater 
adverse effects. When characterizing herbicide toxicity, it is 
obvious that information for single-dose (acute) and long-
term (chronic) effects, as well as information for intermediate 
length exposure, is required. Chronic exposure is referred to 
as continuous exposure to low levels of a toxicant, whereas 
delayed toxicity might be caused by a single dosage or a 
brief exposure event, resulting in a prolonging effect [33]. As 
a result, issues related to dose, duration, and exposure for 
delayed toxicity are not identical to those concerning chronic 
exposure. Indeed, epidemiological studies are critical for 
detecting additional cases of delayed toxicity.

Mechanisms of Herbicides Toxicity

Herbicide and other related chemical toxicity to non-
target organisms is still a serious concern across the 
world. Because herbicides may cause several physiological 
and biochemical changes when enter the body, search for 
mechanisms of their toxicity can be considerably more 
difficult than expected. Perhaps the mode of action of 
herbicides is one of the most dependable techniques for 
researching the mechanisms of their toxicity. Herbicides 
may adversely affect the body by interfering with hormones 
or messengers [34], affecting the nervous system (e.g., 
Organochlorine herbicides) [35], or directly or indirectly 
altering the activities of specific enzymes [36,37]. Due 
to their autoxidation by molecular oxygen, a variety of 
pesticides could directly enhance ROS (Reactive Oxygen 
Species) levels in living organisms [35]. Mostafalou, et al. [38] 
have conducted a significant amount of time systematically 
catalog the molecular mechanisms of herbicide toxicity. The 
studies they conducted yielded a theoretical understanding 
of the causal links between pesticide exposure and human 
chronic illnesses caused by DNA damage [38].

Herbicide misuse has caused human health issues, 
and the mechanisms of toxicity of many herbicides to 
non-target species are still unknown. Understanding the 
mechanism of action of herbicides might be a useful tool for 
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improving their effectiveness; application ways in various 
agricultural practices, dealing with weed resistance issues, 
and investigating hazardous qualities [39]. Most herbicides 
kill plants in different ways since they are designed to target 
specific plant metabolic pathways (e.g., photosynthesis, 
plant hormone action, cell division regulation, etc.) [35,40]. 
However, before killing the target, the herbicide must make 
contact with the site of action in the weed; otherwise, its 
actions become useless. Cellular mechanisms that contribute 
to the manifestation of toxicity. A series of events that begins 

with exposure and involves several interactions between the 
toxicant and the organism. The toxicant is the substance that 
eventually interacts with the endogenous target molecule 
and/or alters the biological environment. The severity of the 
toxic effects depends on both concentration at the target site 
and persistence (time of exposure) at the target site. There 
are four main steps in toxicity mechanisms. Delivery; site of 
exposure to the target (1); reaction of the ultimate toxicant 
with the target molecule (2); cellular dysfunction and 
resultant toxicity (3) and repair or disrepair (4) (Figure 3).

Figure 3: General scheme for mechanisms of pesticides (herbicides) toxicity.

Health Effects of Herbicides on Humans

Herbicides are used extensively across the world. 
Herbicides exposure through food intake is estimated to be 
five times greater in size than other exposures such as air 
and water [41]. According to the World Health Organization, 
fruits and vegetables are the most widely eaten food group, 
accounting for 30% of total food intake. Furthermore, 
because fruit and vegetables are primarily consumed raw or 
semi-processed, it is expected that they contain higher levels 
of pesticide residue than other plant-based food groups, such 
as bread and other cereal-based foods [42,43]. Herbicides 
can enter the body by skin contact, ingestion, or inhalation. 
Pesticides can be metabolized, excreted, stored, or bio 
accumulated in body fat in humans and animals [44,45]. 
Herbicide misuse has been linked to diabetes, reproductive 
disorders, neurological dysfunction, cancer, respiratory 
disorders, dermatological, gastrointestinal, and endocrine 
effects [38,44,46]. Herbicides account for the largest share of 
pesticides used globally [47,48].
 

Herbicides’ adverse effects on human health are 
determined by a number of factors, including the chemical 
class of those compounds, dose, duration, and route of 
exposure. Herbicides can be toxic to people at both high 
and low concentrations [49]. Herbicide exposure can 
cause a variety of human health effects, including cancer, 

reproductive, developmental toxicity, acute toxicity [48,50], 
neurodegenerative [51], and respiratory effects [52], some of 
which, such as glyphosate, are highly controversial [53,54]. 
Furthermore, excessive levels of occupational, accidental, or 
intentional chemical exposure, such as herbicides, can lead 
to hospitalization and death [55].

Many herbicides are banned in various countries each 
year owing to their negative effects on human health; however 
this is done after tonnes of herbicides have been applied and 
distributed across the environment. Several herbicides had to 
be banned because they caused major health problems. This 
is not to say that the herbicides allowed for use are without 
risk, because their direct and indirect effects are difficult to 
assess, difficult, and costly. Some banned herbicides, such 
as paraquat, can cause diseases and even death [56]. The 
World Health Organization reported that poisoning cases 
caused by pesticide are approximately three million people 
each year [57]. Herbicides have two major types toxicity: 
acute and chronic. In terms of their toxicity, the herbicides 
2,4- dichlorophenoxyacetic acid (2,4-D) and 3,6-dichloro-
2-methoxy benzoic acid (Dicamba) belong to the Auxinic 
group and are categorized as class II members (moderately 
dangerous) by Syguda, et al. [58]. Dicamba and 2,4-D have 
been shown to generate Sister chromatid exchanges (SCEs) 
in mammalian cells and to be clastogenic [59]. The US EPA 
has classified dicamba (2-Methoxy-3,6-dichlorobenzoic acid) 
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as a highly toxic toxin has a negative reproductive impact and 
a cholinesterase inhibitor [60].
 

In cancer risk studies, dioxin pollution and exposure to 
2,4-D in combination with other pesticides produced a wide 
variety of the effects [59]. Hernández, et al. [52] found that 
Organochlorine herbicides can cause endocrine disruption 
via many mechanisms, including agonist or antagonist actions 
on various receptors. Triazines, such as atrazine, simazine, 
and ametryn, are another class of herbicides associated 
with endocrine disruption and reproductive toxicity [61,62]. 
Furthermore, Kettles, et al. [63] discovered a probable 
statistical link between triazine herbicides and breast cancer 
incidence. Atrazine is the most well-known triazine, and it is 
a commonly used herbicide that has been linked to oxidative 
stress [62], cytotoxicity [64], and dopaminergic effects [65]. 
Furthermore, atrazine has been linked to reproductive 
toxicity [66] and sexual maturation delays [67].
 

Organophosphates, which were advanced as a more 
ecological alternative to organochlorines [68], incorporate 
an extraordinary variety of herbicides, the most common of 
which is glyphosate. Glyphosate is the chemical substance 
that’s the best-selling herbicide in human history and the 
world and constitutes 60% of the broad-spectrum herbicide 
sales [56]. Glyphosate-based herbicides, such as the well-
known “Roundup,” can cause DNA harms and act as endocrine 
disruptors in human cell lines [69] and in rat testicular cells 
[70], cause harms to cultured human cutaneous cells [71], 
and advance cell passing within the testicular cells of test 
animals [70,72]. There is also evidence for the ability to 
affect cytoskeleton and their intracellular transport [73]. 
Correlation analyses have raised concerns about a possible 
link between glyphosate use and various health and disease 
effects, such as hypertension, diabetes, stroke, autism, kidney 
failure, Parkinson’s and Alzheimer’s disease and cancer [74].
 

In addition, there are concerns about the possibility 

that glyphosate may cause gluten intolerance, health 
conditions associated with essential trace metal deficiencies, 
reproductive problems, and an increased risk of developing 
diabetes. Non-Hodgkin lymphoma [75]. Population-based 
studies have linked exposure to organophosphate herbicides 
to serious health effects, including cardiovascular disease [64], 
male reproductive system effects [76], nervous system effects 
[68,77], dementia effect [78], and possible increased risk of 
non-Hodgkin’s lymphoma [79]. In addition, prenatal exposure 
to organophosphates is associated with shortened gestational 
age [79] and neurological problems in children [80].
 

Paraquat (PQ, 1,1’-dimethyl-4,4’-bipyridinium 
dichloride) is a highly toxic quaternary ammonium 
herbicide widely used in agriculture. Mortality from PQ 
poisoning reaches 60-80%, mainly due to acute lung injury 
and progressive pulmonary fibrosis [81,82]. PQ cannot 
be excreted normally and continues to accumulate in the 
body. As a result, other organs such as the liver, heart, and 
lungs are also affected, leading to multiple organ failure 
[82]. According to He, et al. [83], paraquat, the second most 
widely used herbicide in the world, selectively accumulates 
in human lungs by causing oxidative damage and fibrosis, 
resulting several individuals to death. Chronic exposure to 
this herbicide has also been associated with hepatic lesions, 
kidney failure, and Parkinson’s disease [84]. He, et al. [83] 
studied the toxicity of paraquat to normal His BEAS-2B cells 
(human bronchial epithelial cells) and found that it was 
dose-dependent, leading to mitochondrial damage, oxidative 
stress, death of exposed lung cells, cytokine production, 
cause transformation of profibrogenic growth factors and 
my fibroblasts. Herbicides must be properly managed while 
handling them, unless otherwise, there will be the higher 
tendency to contaminate the environment and toxic to 
humans, animals or non-targeted organisms and even they 
effects can lead to death as well. The major health effects of 
herbicides can be summarized in Figure 4.

 

Figure 4: Major health effects of herbicides exposure.
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Prevention Mechanisms of Herbicides 
Exposure and Health Effects

The preventive safety measures can be applied early in 
the planning of agricultural activities, during the steps of 
anticipating, identifying and recognizing the risks previously 
described. Preventive safety measures are aimed at the risk 
factors and can be divided into two groups: to eliminate and 
reduce the risk of poisoning. Preventive measures aim to 
ensure a safe working environment and to ensure that workers 
are qualified, motivated and in good health. The preventive 
safety strategies must be also applied for the people who 
have tendency to be exposed by herbicide (i.e., people who 
are near farm areas or herbicides production areas). When 
planning agricultural activities using herbicides, preventive 
measures will act on risk factors in order to reduce the 
toxicity of the herbicide and/or the exposure.

Alternative and Emerging Cultivation Systems 
Less Dependent on Herbicides

Among all pesticide classes, herbicides rank highest in 
terms of application rate. They are classified as emerging 
contaminants or pollutants which have adverse effects on 
humans, animals and the environment as well. Therefore, it 
is very important to shift to alternative and emerging farming 
systems that are less dependent or totally independent on 
herbicides to minimize or avoid the risks associated with 
the use of herbicides. Biological controls (insects, pathogens, 
grazing animals, agronomic practices, etc.) [85-87], Nano 
composite-based herbicides [88] and artificial intelligence 
and robotics application [89,90] are the sum of alternative 
and emerging trends that are used in controlling the weed. 
The advent of robotic devices presents a promising future 
for weed management. These cutting-edge systems will be 
able to precisely remove weeds through robotic deployment, 
store and analyse data on weed presence, help with decision-
making regarding the timing and location of weed control 
efforts, and then collect data on treatment effectiveness to 
enable post-treatment evaluation.

Most of the alternative trends of weed management are 
concentrated on ecological approaches to plant protection 
based on available ecological knowledge. The goal of this 
approach is to increase the ability of agricultural systems 
to direct the natural process of pest control, contributing to 
improved agricultural production, sustainable pest control 
system, Disease and weed control should include three basic 
elements: prevention, decision-making and control [32]. 
Prevention is optimized by maximizing the use of natural 
processes in cultivation systems, suppressing harmful 
microbes by facilitating the development of antagonists, 
optimizing system diversity and stimulating recycling of 
internal resources [91]. Tools to accomplish this include: 

(i) farm hygiene, including the key elements of using clean 
seeds or planting material and maintaining temporal and 
spatial segregation between crops of the same species (e.g., 
volunteer management); (ii) cultivation systems; synergistic 
and antagonistic effects that occur in, for example, disease 
and pest control through engineered systems of non-chemical 
prevention methods such as growing cover crops and using 
soil amendments to increase populations of antagonists, (iii) 
cultural practices that support ecological processes; Delaying 
planting to reduce weed growth and even prevent seed set, 
removal of crop residues and plant debris, management of 
soil organic matter and cultivation strategies; Other input 
optimizations for attack by pathogens, or increased damage 
threshold; (v) breeding for resistance, e.g. by selecting certain 
plant types that are more competitive or more tolerant to 
weeds; e.g., Against powdery mildew.
 

Use of Personal Protective Equipment (PPE)

Various types of personal protective equipment (PPE) 
can be used to limit skin exposure when working with 
herbicides. Gloves, boots, hats, long sleeve shirts, and 
chemical resistant coveralls are the most common types of his 
PPE. The toxicity of the pesticides used, exposure conditions, 
and a worker’s personal preferences will ultimately influence 
the type of PPE. Gloves and boots are the minimum PPE for 
most herbicides’ products. As a general rule, highly toxic 
herbicides require the use of multiple types of PPE to reduce 
exposure. Various types of PPE provide complementary 
personal protection against dermal exposure. Wearing 
gloves proved to be the most effective way to protect against 
pesticide exposure. The protection provided by PPE depends 
on the protective properties of each type of PPE itself, how 
the herbicide is applied, and the level of correct application 
and maintenance by the farmer. Common protective clothing 
provides protection against exposure depending on the type 
of fabric, such as thickness and weight. Clothing made from 
barrier and non-barrier fabrics has been shown to reduce 
dermal exposure [92]. However, waterproof polypropylene 
fabrics have been found to provide better protection when 
compared to cotton garments [93].
 

Penetration in cotton garments ranged from 11.2% to 
26.8%, whereas penetration in synthetic fabrics was found 
to be less than 2.4% [94]. However, a study of US citrus 
growers found little difference between synthetic and woven 
fabrics [95]. The effectiveness of PPE in terms of herbicide 
penetration through clothing has been reported to be 
affected by the application method [96]. However, results 
concerning this issue have been inconsistent. For example, 
while low-pressure backpack spraying was associated with 
greater herbicide penetration through the clothing than 
high-pressure spraying [97], according to other research 
[94], a low-pressure backpack application resulted in lower 
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penetration than high-pressure hand lance spraying. An 
important but often neglected factor in PPE effectiveness is 
how each piece of PPE is actually used. Farmer movement 
during herbicide application promotes movement and 
further diffusion of dust and liquids across PPE fabrics, 
and farmer perspiration, especially in hot environments, 
often also affects penetration resistance of PPE fabrics [95]. 
Given that farmers’ movements can cause friction, some 
polyethylene coveralls showed greater penetration [98]. Of 
course, the protective effectiveness of PPE depends on its 
correct use. For example, farmers who frequently roll up their 
sleeves or remove gloves when working with herbicides are 
at increased risk of dermal exposure [94].
 

Improper, improperly worn, improperly maintained, 
and improperly used PPE can provide inadequate personal 
protection. Therefore, the theoretical maximum level of 
protection is rarely achieved in everyday use of PPE, and the 
actual level of personal protection is difficult to assess. As 
herbicides continue to be tools of modern agriculture, it is 
important to develop strategies to reduce their impact [99]. 
This includes accurate diagnosis and advanced knowledge of 
pest problems, optimized timing of interventions to maximize 
long-term effects, selection of agrochemical products with 
minimal impact on non-target organisms and workers, 
and through improved application methods, with minimal 
pesticide use. Amount of product selected for maximal dose 
delivery to biological targets [100]. Overall optimization 
of herbicide handling processes, strict compliance with 
regulations, and addressing public concerns about herbicide 
residues in food and drinking water are essential. To this 
end, when using herbicides, functional and well-maintained 
sprayers, and the necessary precautions at all stages of 
herbicides handling, are essential and can reduce farmers’ 
exposure to herbicides.

Appropriate Selection of Persons Who Have 
Knowledge and Skill About The Herbicides 
Use

To be able to engage in hazardous activities, employees 
must have physical and psychological profiles suitable for 
working conditions. Personality traits can be strong and 
prominent, positive or negative, and indicate strengths 
and weaknesses such as irresponsibility, stubbornness, 
and irritability [101]. A worker`s personality, positive or 
otherwise, can influence the work environment and lead to 
unsafe behavior and unsafe working conditions. Negative 
traits can cause employees to ignore safety regulations, 
behave unsafely, or make mistakes in the performance 
of their duties, which can lead to work-related injuries. 
Accidents can be prevented by taking into account the 
physical and psychological profiles of workers required to 
perform dangerous tasks [101].

Psychological Measures

As employees interact throughout the workplace 
(physical or abstract space), they are positively or negatively 
impacted, altering their physical, mental and social states. On 
the other hand, it is natural for employees to bring personal 
issues into the workplace [102]. In work activities, a personal 
anxiety factor arises when a worker is unwilling to work 
under an abnormal physical condition (disease, physical or 
mental disability) without the experience, knowledge and 
proper training. Due to personal insecurities, employees 
may cause accidents or occupational diseases through 
negligence, recklessness, or misconduct [102]. Companies 
should take steps to evaluate their employees by promoting 
their professional and personal development to control the 
impact of the human factor on the risk of pesticide poisoning. 
Such measures increase employee self-esteem, improve 
performance and commitment, and create a more welcoming 
work environment. Other positive actions include employee 
dynamics, recognition campaigns, and willingness to listen 
to suggestions for workplace improvement. More than ever, 
companies are looking for professionals who work in groups, 
are proactive and have leadership qualities.
 

Proper Herbicides Packaging

Herbicide containers shall be designed and constructed 
to prevent leakage, evaporation, loss or alteration of the 
contents and to facilitate cleaning, sorting, reuse, recycling 
and proper disposal. Rigid packages containing water-
miscible or water-dispersible formulations should be applied 
by the user with her triple wash or equivalent technique as 
directed on the label, package insert, or brochure package 
insert. Users must return empty containers of water-miscible 
pesticides and lids that have been washed three times to the 
place of purchase within one year from the date of purchases. 
The user must provide the control authority with a store, 
collection point, or empty container return slip provided 
by the collection point for at least one year after the return 
of the package. Packaging containing unusable or unused 
product should be disposed of according to the guidelines in 
the package insert [102].

Proper Herbicides Labels and Package Leaflets

Warnings about the hazards of herbicides regarding 
labels and package leaflets must be clearly displayed. The 
underside of the herbicide label must have a distinct colored 
stripe with a height equal to 15% of the height of the label/
package, separate from the rest of the label. The colours of 
the ribbon correspond to the different toxicological classes 
of herbicides [102]. It is prohibited to work on newly treated 
surfaces before the re-entry interval indicated on the label 
has passed unless recommended protective equipment 
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is used. Also, during aerial spraying, no one is allowed to 
enter or remain in the treatment area. If access is required 
during this period, the personal protective equipment 
(PPE) recommended for the application must also be used. 
Recommended PPE should be worn in the following order: 
Boots, aprons, respirators, goggles, hoods and gloves.
 

Giving Awareness about The Use of Herbicides

Employers, on the other hand, should select the least 
toxic products and create conditions for mechanization 
and automation of work to minimize worker exposure to 
pesticides. Training in the handling and use of pesticides 
under field conditions is essential to reduce risk and prevent 
poisoning [103]. Awareness of the use or handling of 
herbicides must be provided by technical people who have 
background knowledge and skills about the herbicides or 
other materials that are to be used [104].

Conclusion

The use of herbicides in agricultural production 
brings important benefits such as: rapid onset of action 
and the control of some weed species that contribute 
significantly to yield reduction. Despite these advantages 
of herbicides, it is known that widespread and improper 
use has serious consequences for the structure, pollution 
and the entire biological system, often endangering human 
health. Improper use of herbicides has a significant impact 
on health, particularly in humans and animals, in the form 
of both short- and long-term damage. The degree of their 
damage or poisoning depends on the dose (concentration), 
exposure time and route of entry into the human body. 
Exposure to herbicides can cause a variety of adverse health 
effects, including carcinogenic, cardiovascular, reproductive, 
neurological, respiratory, cellular, digestive, or hormonal/
endocrine effects. It is very important to understand and 
consider the level of toxicity and toxicity mechanisms of 
herbicides before using herbicides for various purposes in 
order to minimize their adverse effects. Employing alternative, 
less herbicide-dependent cropping systems, properly using 
all certified personal protective equipment (PPE) when 
handling herbicides, appropriate selection personnel who 
have knowledge and skill about the pesticides (i.e., especially 
for occupational purpose), applying suitable psychological 
measures (i.e., particularly for occupational purpose), proper 
packaging and package leaflet, proper labelling and giving 
general awareness about the use or handle of pesticide for 
farmers or any others who are not familiar with the use of 
pesticides are the major prevention strategies to minimize 
or avoid exposure and its health effects. Not only farmers but 
also others stakeholders (researchers, agricultural experts, 
policymakers, etc.) involvement are needed to reduce or 
totally avoid the risks associated with the improper use of 

herbicides in agriculture.
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